Let d ≥ 2 be a square-free integer and for all n ≥ 0, let be the length of the continued fraction expansion of . If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].
@article{bwmeta1.element.bwnjournal-article-aav85i1p35bwm, author = {Guillaume Grisel}, title = {Length of continued fractions in principal quadratic fields}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {35-49}, zbl = {0917.11003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i1p35bwm} }
Guillaume Grisel. Length of continued fractions in principal quadratic fields. Acta Arithmetica, Tome 84 (1998) pp. 35-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i1p35bwm/
[000] [1] N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic number fields, Ann. of Math. 56 (1952), 479-493. | Zbl 0049.30605
[001] [2] S. Chowla and S. S. Pillai, Periodic simple continued fraction, J. London Math. Soc. 6 (1931), 85-89. | Zbl 0001.32601
[002] [3] H. Cohen, Multiplication par un entier d'une fraction continue périodique, Acta Arith. 26 (1974), 129-148. | Zbl 0273.10031
[003] [4] D. A. Cox, Primes of the Form x² + ny², Wiley, 1989.
[004] [5] R. Descombes, Eléments de théorie des nombres, Presses Univ. France, 1986.
[005] [6] G. Grisel, Sur la longueur de la fraction continue de , Acta Arith. 74 (1996), 161-176.
[006] [7] G. Grisel, Length of the continued fraction of the powers of a rational fraction, J. Number Theory 62 (1997), 322-337. | Zbl 0878.11028
[007] [8] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994. | Zbl 0805.11001
[008] [9] M. Mendès France, The depth of a rational number, in: Topics in Number Theory (Debrecen, 1974), Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 183-194.
[009] [10] L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144. | Zbl 0093.04305