Sums of powers: an arithmetic refinement to the probabilistic model of Erdős and Rényi
Jean-Marc Deshouillers ; François Hennecart ; Bernard Landreau
Acta Arithmetica, Tome 84 (1998), p. 13-33 / Harvested from The Polish Digital Mathematics Library

Erdős and Rényi proposed in 1960 a probabilistic model for sums of s integral sth powers. Their model leads almost surely to a positive density for sums of s pseudo sth powers, which does not reflect the case of sums of two squares. We refine their model by adding arithmetical considerations and show that our model is in accordance with a zero density for sums of two pseudo-squares and a positive density for sums of s pseudo sth powers when s ≥ 3. Moreover, our approach supports a conjecture of Hooley on the average of the square of the number of representations.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207151
@article{bwmeta1.element.bwnjournal-article-aav85i1p13bwm,
     author = {Jean-Marc Deshouillers and Fran\c cois Hennecart and Bernard Landreau},
     title = {Sums of powers: an arithmetic refinement to the probabilistic model of Erd\H os and R\'enyi},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {13-33},
     zbl = {0923.11136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i1p13bwm}
}
Jean-Marc Deshouillers; François Hennecart; Bernard Landreau. Sums of powers: an arithmetic refinement to the probabilistic model of Erdős and Rényi. Acta Arithmetica, Tome 84 (1998) pp. 13-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i1p13bwm/

[000] [1] R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., Providence, 1963. | Zbl 0128.04303

[001] [2] P. Barrucand, Sur la distribution empirique des sommes de trois cubes ou de quatre bicarrés, C. R. Acad. Sci. Paris A 267 (1968), 409-411. | Zbl 0162.06403

[002] [3] H. Davenport, Multiplicative Number Theory, Markham, 1967.

[003] [4] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. | Zbl 0091.04401

[004] [5] J. H. Goguel, Über Summen von zufälligen Folgen natürlichen Zahlen, J. Reine Angew. Math. 278/279 (1975), 63-77.

[005] [6] H. Halberstam and R. F. Roth, Sequences, Clarendon Press, Oxford, 1966.

[006] [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1985. | Zbl 0020.29201

[007] [8] C. Hooley, On some topics connected with Waring's problem, J. Reine Angew. Math. 369 (1986), 110-153. | Zbl 0589.10052

[008] [9] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. (3) 13 (1908), 305-312.

[009] [10] B. Landreau, Modèle probabiliste pour les sommes de s puissances s-ièmes, Compositio Math. 99 (1995), 1-31.

[010] [11] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press, 1981. | Zbl 0455.10034