@article{bwmeta1.element.bwnjournal-article-aav84i4p337bwm, author = {Shin-Ichi Yasutomi}, title = {The continued fraction expansion of $\alpha$ with $\mu$($\alpha$) = 3}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {337-374}, zbl = {0967.11024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i4p337bwm} }
Shin-Ichi Yasutomi. The continued fraction expansion of α with μ(α) = 3. Acta Arithmetica, Tome 84 (1998) pp. 337-374. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i4p337bwm/
[000] [1] H. Cohn, Some direct limits of primitive homotopy words and of Markoff geodesics, in: Discontinuous Groups and Riemann Surfaces, Univ. of Maryland, 1973, Ann. of Math. Stud. 79, Princeton, 1974, 91-98.
[001] [2] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, 1989. | Zbl 0685.10023
[002] [3] S. Ito and S. Yasutomi, On continued fraction, substitution and characteristic sequences [nx + y] - [(n-1)x + y], Japan. J. Math. 16 (1990), 287-306. | Zbl 0721.11009
[003] [4] W. F. Lunnon and A. B. Pleasants, Characterization of two-distance sequences, J. Austral. Math. Soc. Ser. A 53 (1992), 198-218. | Zbl 0759.11005
[004] [5] A. Markoff [A. Markov], Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406; II, Math. Ann.. 17 (1880), 379-399.
[005] [6] A. Markoff [A. Markov], Sur une question de Jean Bernoulli, Math. Ann.. 19 (1882), 27-36.
[006] [7] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math 62 (1940), 1-42. | Zbl 0022.34003
[007] [8] I. Nakashima, J. Tamura and S. Yasutomi, Modified complexity and *-Sturmian word, preprint, 1997. | Zbl 0928.11012
[008] [9] O. Perron, Die Lehre von den Kettenbrüchen I, Teubner, Stuttgart, 1954. | Zbl 0056.05901
[009] [10] A. M. Rocket and P. Szüsz, Continued Fractions, World Scientific, 1992.