On strong uniform distribution, II. The infinite-dimensional case
Y. Lacroix
Acta Arithmetica, Tome 84 (1998), p. 279-290 / Harvested from The Polish Digital Mathematics Library

We construct infinite-dimensional chains that are L¹ good for almost sure convergence, which settles a question raised in this journal [N]. We give some conditions for a coprime generated chain to be bad for L² or L, using the entropy method. It follows that such a chain with positive lower density is bad for L. There also exist such bad chains with zero density.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207146
@article{bwmeta1.element.bwnjournal-article-aav84i3p279bwm,
     author = {Y. Lacroix},
     title = {On strong uniform distribution, II. The infinite-dimensional case},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {279-290},
     zbl = {0918.11042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i3p279bwm}
}
Y. Lacroix. On strong uniform distribution, II. The infinite-dimensional case. Acta Arithmetica, Tome 84 (1998) pp. 279-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i3p279bwm/

[000] [B] R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), 191-198. | Zbl 0333.10033

[001] [Be] T. Bewley, Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions, Ann. Inst. H. Poincaré Sect. B 7 (1971), 248-260.

[002] [Bo] J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-97. | Zbl 0677.60042

[003] [BW] Y. Bugeaud and M. Weber, Examples and counterexamples for Riemann sums, preprint, I.R.M.A., Strasbourg, 1996.

[004] [DP] L. E. Dubins and J. Pitman, A pointwise ergodic theorem for the group of rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299-308. | Zbl 0412.60050

[005] [J] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. 35 (1934), 248-251. | Zbl 0009.30603

[006] [K] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.

[007] [M] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540-556. | Zbl 0208.31402

[008] [N] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193. | Zbl 0716.11036

[009] [N1] R. Nair, On Riemann sums and Lebesgue integrals, Monatsh. Math. 120 (1995), 49-54. | Zbl 0833.28002

[010] [R] W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964), 321-324. | Zbl 0132.03601

[011] [T] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Vol. 1, Société Mathématique de France, 1995.