We construct infinite-dimensional chains that are L¹ good for almost sure convergence, which settles a question raised in this journal [N]. We give some conditions for a coprime generated chain to be bad for L² or , using the entropy method. It follows that such a chain with positive lower density is bad for . There also exist such bad chains with zero density.
@article{bwmeta1.element.bwnjournal-article-aav84i3p279bwm, author = {Y. Lacroix}, title = {On strong uniform distribution, II. The infinite-dimensional case}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {279-290}, zbl = {0918.11042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i3p279bwm} }
Y. Lacroix. On strong uniform distribution, II. The infinite-dimensional case. Acta Arithmetica, Tome 84 (1998) pp. 279-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i3p279bwm/
[000] [B] R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), 191-198. | Zbl 0333.10033
[001] [Be] T. Bewley, Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions, Ann. Inst. H. Poincaré Sect. B 7 (1971), 248-260.
[002] [Bo] J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-97. | Zbl 0677.60042
[003] [BW] Y. Bugeaud and M. Weber, Examples and counterexamples for Riemann sums, preprint, I.R.M.A., Strasbourg, 1996.
[004] [DP] L. E. Dubins and J. Pitman, A pointwise ergodic theorem for the group of rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299-308. | Zbl 0412.60050
[005] [J] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. 35 (1934), 248-251. | Zbl 0009.30603
[006] [K] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.
[007] [M] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540-556. | Zbl 0208.31402
[008] [N] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193. | Zbl 0716.11036
[009] [N1] R. Nair, On Riemann sums and Lebesgue integrals, Monatsh. Math. 120 (1995), 49-54. | Zbl 0833.28002
[010] [R] W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964), 321-324. | Zbl 0132.03601
[011] [T] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Vol. 1, Société Mathématique de France, 1995.