We construct analogs of the classical Δ-function for quotients of the upper half plane 𝓗 by certain arithmetic triangle groups Γ coming from quaternion division algebras B. We also establish a relative integrality result concerning modular functions of the form Δ(αz)/Δ(z) for α in B⁺. We give two explicit examples at the end.
@article{bwmeta1.element.bwnjournal-article-aav84i2p97bwm, author = {Shujuan Ji}, title = {Analogs of $\Delta$(z) for triangular Shimura curves}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {97-108}, zbl = {0913.11020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p97bwm} }
Shujuan Ji. Analogs of Δ(z) for triangular Shimura curves. Acta Arithmetica, Tome 84 (1998) pp. 97-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p97bwm/
[000] [Ji] S. Ji, Arithmetic and geometry on triangular Shimura curves, Caltech Ph.D. thesis, 1995.
[001] S. Lang, Elliptic Functions, Springer, 1987.
[002] [Sh1] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159. | Zbl 0204.07201
[003] [Sh2] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
[004] [Ta] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91-106. | Zbl 0344.20035
[005] [Vi] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer, 1980. | Zbl 0422.12008