Analogs of Δ(z) for triangular Shimura curves
Shujuan Ji
Acta Arithmetica, Tome 84 (1998), p. 97-108 / Harvested from The Polish Digital Mathematics Library

We construct analogs of the classical Δ-function for quotients of the upper half plane 𝓗 by certain arithmetic triangle groups Γ coming from quaternion division algebras B. We also establish a relative integrality result concerning modular functions of the form Δ(αz)/Δ(z) for α in B⁺. We give two explicit examples at the end.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207142
@article{bwmeta1.element.bwnjournal-article-aav84i2p97bwm,
     author = {Shujuan Ji},
     title = {Analogs of $\Delta$(z) for triangular Shimura curves},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {97-108},
     zbl = {0913.11020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p97bwm}
}
Shujuan Ji. Analogs of Δ(z) for triangular Shimura curves. Acta Arithmetica, Tome 84 (1998) pp. 97-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p97bwm/

[000] [Ji] S. Ji, Arithmetic and geometry on triangular Shimura curves, Caltech Ph.D. thesis, 1995.

[001] S. Lang, Elliptic Functions, Springer, 1987.

[002] [Sh1] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159. | Zbl 0204.07201

[003] [Sh2] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.

[004] [Ta] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91-106. | Zbl 0344.20035

[005] [Vi] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer, 1980. | Zbl 0422.12008