We find a generator of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
@article{bwmeta1.element.bwnjournal-article-aav84i2p129bwm, author = {Chang Heon Kim and Ja Kyung Koo}, title = {Arithmetic of the modular function $j\_{1,4}$ }, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {129-143}, zbl = {0907.11014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p129bwm} }
Chang Heon Kim; Ja Kyung Koo. Arithmetic of the modular function $j_{1,4}$ . Acta Arithmetica, Tome 84 (1998) pp. 129-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i2p129bwm/
[000] [1] Borcherds, R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. | Zbl 0799.17014
[001] [2] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., and Wilson, R.A., Atlas of Finite Groups, Clarendon Press, 1985. | Zbl 0568.20001
[002] [3] Conway, J.H. and Norton, S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339. | Zbl 0424.20010
[003] [4] Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. | Zbl 0025.02003
[004] [5] Foster, O., Lectures on Riemann Surfaces, Springer, 1981.
[005] [6] Frenkel, I.B., Lepowsky, J., and Meurman, A., Vertex Operator Algebras and the Monster, Academic Press, Boston, 1988. | Zbl 0674.17001
[006] [7] Frenkel, I.B., Lepowsky, J., and Meurman, A., A natural representation of the Fischer-Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 3256-3260. | Zbl 0543.20016
[007] [8] Kim, C.H. and Koo, J.K., On the modular function j₄ of level 4, preprint. | Zbl 0921.11024
[008] [9] Kim, C.H. and Koo, J.K., On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), 291-297. | Zbl 0894.11018
[009] [10] Kim, C.H. and Koo, J.K., On the modular function , in preparation.
[010] [11] Koike, M., On replication formula and Hecke operators, preprint, Nagoya University.
[011] [12] Lang, S., Algebra, Addison-Wesley, 1993.
[012] [13] Lang, S.,, Elliptic Functions, Springer, 1987.
[013] [14] Néron, A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. 21 (1964), 5-128. | Zbl 0132.41403
[014] [15] Norton, S.P., More on moonshine, in: Computational Group Theory, Academic Press, London, 1984, 185-195.
[015] [16] Rankin, R., Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977.
[016] [17] Schoeneberg, B., Elliptic Modular Functions, Springer, 1973. | Zbl 0285.10016
[017] [18] Serre, J.-P. and Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517. | Zbl 0172.46101
[018] [19] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Tokyo, 1971. | Zbl 0221.10029
[019] [20] Thompson, J.G., Some numerology between the Fischer-Griess monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), 352-353. | Zbl 0425.20016