Sequences with bounded l.c.m. of each pair of terms
Yong-Gao Chen
Acta Arithmetica, Tome 84 (1998), p. 71-95 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207136
@article{bwmeta1.element.bwnjournal-article-aav84i1p71bwm,
     author = {Yong-Gao Chen},
     title = {Sequences with bounded l.c.m. of each pair of terms},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {71-95},
     zbl = {0891.11010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p71bwm}
}
Yong-Gao Chen. Sequences with bounded l.c.m. of each pair of terms. Acta Arithmetica, Tome 84 (1998) pp. 71-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p71bwm/

[000] [1] S. L. G. Choi, The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, Mathematika 19 (1972), 221-230. | Zbl 0251.10040

[001] [2] S. L. G. Choi, The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, II, Acta Arith. 29 (1976), 105-111. | Zbl 0286.10030

[002] [3] P. Erdős, Problem, Mat. Lapok 2 (1951), 233.

[003] [4] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 181-189.

[004] [5] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994. | Zbl 0805.11001

[005] [6] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974. | Zbl 0298.10026