@article{bwmeta1.element.bwnjournal-article-aav84i1p59bwm, author = {Franz Lemmermeyer}, title = {Ideal class groups of cyclotomic number fields II}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {59-70}, zbl = {0901.11031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p59bwm} }
Franz Lemmermeyer. Ideal class groups of cyclotomic number fields II. Acta Arithmetica, Tome 84 (1998) pp. 59-70. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p59bwm/
[000] [1] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP/PARI calculator.
[001] [2] P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, preprint, 1997. | Zbl 0888.11045
[002] [3] G. Cornell and L. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), 260-274. | Zbl 0582.12005
[003] [4] G. Gras, Sur les l-classes d'idéaux dans les extensions cubiques relatives de degré l, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 1-48. | Zbl 0276.12013
[004] [5] R. Greenberg, On some questions concerning the Iwasawa invariants, Ph.D. thesis, Princeton, 1971.
[005] [6] G. Guerry, Sur la 2-composante du groupe des classes de certaines extensions cycliques de degré , J. Number Theory 53 (1995), 159-172. | Zbl 0833.11054
[006] [7] E. Inaba, Über die Struktur der l-Klassengruppe zyklischer Zahlkörper vom Primzahlgrad l, J. Fac. Sci. Univ. Tokyo Sect. I 4 (1940), 61-115. | Zbl 0024.01002
[007] [8] K. Iwasawa, A note on the group of units of an algebraic number field, J. Math. Pures Appl. 35 (1956), 189-192. | Zbl 0071.26504
[008] [9] J. F. Jaulent, L'état actuel du problème de la capitulation, Sém. Théor. Nombres Bordeaux, 1987/88, exp. 17, 33 pp.
[009] [10] S. Jeannin, Nombre de classes et unités des corps de nombres cycliques quintiques d'E. Lehmer, J. Théor. Nombres Bordeaux 8 (1996), 75-92.
[010] [11] W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215-254. | Zbl 0432.12006
[011] [12] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528. | Zbl 0455.12007
[012] [13] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347-359. | Zbl 0837.11059
[013] [14] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68. | Zbl 0890.11031
[014] [15] F. van der Linden, Class number computations in real abelian number fields, Math. Comp. 39 (1982), 693-707. | Zbl 0505.12010
[015] [16] S. Mäki, The Determination of Units in Real Cyclic Sextic Fields, Lecture Notes in Math. 797, Springer, 1980. | Zbl 0423.12006
[016] [17] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), 65-73. | Zbl 0369.12007
[017] [18] N. Matsumura, On the class field tower of an imaginary quadratic number field, Mem. Fac. Sci. Kyushu Univ. Ser. A 31 (1977), 165-177. | Zbl 0374.12003
[018] [19] R. J. Milgram, Odd index subgroups of units in cyclotomic fields and applications, in: Lecture Notes in Math. 854, Springer, 1981, 269-298.
[019] [20] T. Morishima, On the second factor of the class number of the cyclotomic field, J. Math. Anal. Appl. 15 (1966), 141-153. | Zbl 0139.28201
[020] [21] M. Moriya, Über die Klassenzahl eines relativ-zyklischen Zahlkörpers von Primzahlgrad, Japan. J. Math. 10 (1933), 1-18. | Zbl 59.0193.04
[021] [22] M. Ozaki, On the p-rank of the ideal class group of the maximal real subfield of a cyclotomic field, preprint, 1997.
[022] [23] L. Rédei, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363. | Zbl 0008.19502
[023] [24] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. | Zbl 59.0192.01
[024] [25] B. Schmithals, Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm, Arch. Math. (Basel) 34 (1980), 307-312. | Zbl 0448.12008
[025] [26] A. Scholz, Über die Lösbarkeit der Gleichung t²-Du² =-4, Math. Z. 39 (1934), 95-111. | Zbl 0009.29402
[026] [27] R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220. | Zbl 0589.12011
[027] [28] R. Schoof, Minus class groups of the fields of the l-th roots of unity, Math. Comp., to appear. | Zbl 0902.11043
[028] [29] R. Schoof, Class numbers of ℚ(cos2π/p), to appear (cf. [32], pp. 420-423).
[029] [30] P. Stevenhagen, On the parity of cyclotomic class numbers, Math. Comp. 63 (1994), 773-784. | Zbl 0819.11050
[030] [31] K. Tateyama, On the ideal class groups of some cyclotomic fields, Proc. Japan Acad. 58 (1980), 333-335. | Zbl 0509.12005
[031] [32] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, 1997. | Zbl 0966.11047