@article{bwmeta1.element.bwnjournal-article-aav84i1p43bwm, author = {Brigitte Adam}, title = {G\'en\'eralisation d'une famille de Shanks}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {43-58}, zbl = {0899.11066}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p43bwm} }
Brigitte Adam. Généralisation d'une famille de Shanks. Acta Arithmetica, Tome 84 (1998) pp. 43-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav84i1p43bwm/
[000] [1] B. Adam, Voronoï-algorithm expansion of two families with period length going to infinity, Math. Comp. 64 (1995), 1687-1704. | Zbl 0858.11070
[001] [2] L. Bernstein, The Jacobi-Perron Algorithm, its Theory and Application, Lecture Notes in Math. 207, Springer, Berlin, 1971. | Zbl 0213.05201
[002] [3] B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monographs 10, Amer. Math. Soc., Providence, R.I., 1964. | Zbl 0133.30202
[003] [4] E. Dubois et A. Farhane, Unité fondamentale dans des familles d'ordres cubiques, Utilitas Math. 47 (1995), 97-115.
[004] [5] A. Farhane, Spécialisation de points extrémaux. Application aux fractions continues et aux unités d'une famille de corps cubiques, thèse, Caen, 1992.
[005] [6] F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnungen, Abh. Math. Sem. Univ. Hamburg 59 (1989), 157-169.
[006] [7] C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths going to infinity, J. Number Theory 37 (1991), 173-180. | Zbl 0723.11032
[007] [8] R. A. Mollin and H. C. Williams, Consecutive powers in continued fractions, Acta Arith. 61 (1992), 233-264. | Zbl 0764.11010
[008] [9] O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1-76. | Zbl 38.0262.01
[009] [10] D. Shanks, On Gauss's class number problems, Math. Comp. 23 (1969), 151-163. | Zbl 0177.07103
[010] [11] G. F. Voronoï, On a generalization of the algorithm of continued fractions, Doctoral Dissertation, Warszawa, 1896 (en russe).
[011] [12] H. C. Williams, Some generalizations of the sequence of Shanks, Acta Arith. 69 (1995), 199-215. | Zbl 0842.11004