A conditional result on Goldbach numbers in short intervals
A. Languasco
Acta Arithmetica, Tome 84 (1998), p. 93-103 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207117
@article{bwmeta1.element.bwnjournal-article-aav83i2p93bwm,
     author = {A. Languasco},
     title = {A conditional result on Goldbach numbers in short intervals},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {93-103},
     zbl = {0940.11045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p93bwm}
}
A. Languasco. A conditional result on Goldbach numbers in short intervals. Acta Arithmetica, Tome 84 (1998) pp. 93-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p93bwm/

[000] [1] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. | Zbl 0453.10002

[001] [2] J. B. Friedlander and D. A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short intervals, Illinois J. Math. 39 (1995), 158-180. | Zbl 0814.11048

[002] [3] D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285-297. | Zbl 0719.11065

[003] [4] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Dioph. Probl., A. C. Adolphson et al. (eds.), Birkhäuser, 1987, 183-203. | Zbl 0629.10032

[004] [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, 1990. | Zbl 0020.29201

[005] [6] D. R. Heath-Brown, Gaps between primes, and the pair correlation of zeros of the zeta-function, Acta Arith. 41 (1982), 85-99. | Zbl 0414.10044

[006] [7] L. K. Hua, Introduction to Number Theory, Springer, 1982.

[007] [8] I. Kátai, A remark on a paper of Yu. V. Linnik, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99-100 (in Hungarian).

[008] [9] A. Languasco and A. Perelli, On Linnik's theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier (Grenoble) 44 (1994), 307-322. | Zbl 0799.11040

[009] [10] A. Languasco and A. Perelli, A pair correlation hypothesis and the exceptional set in Goldbach's problem, Mathematika 43 (1996), 349-361. | Zbl 0884.11042

[010] [11] Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 503-520 (in Russian). | Zbl 0049.03104

[011] [12] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. | Zbl 0216.03501

[012] [13] H. L. Montgomery, The pair correlation of zeros of the zeta function, in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., 1973, 181-193. | Zbl 0268.10023

[013] [14] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. | Zbl 0301.10043

[014] [15] E. C. Titchmarsh, The Theory of Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986. | Zbl 0601.10026