A singular series average and Goldbach numbers in short intervals
A. Languasco
Acta Arithmetica, Tome 84 (1998), p. 171-179 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207113
@article{bwmeta1.element.bwnjournal-article-aav83i2p171bwm,
     author = {A. Languasco},
     title = {A singular series average and Goldbach numbers in short intervals},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {171-179},
     zbl = {0894.11037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p171bwm}
}
A. Languasco. A singular series average and Goldbach numbers in short intervals. Acta Arithmetica, Tome 84 (1998) pp. 171-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p171bwm/

[000] [1] R. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach's problem in short intervals, in: Proc. of Sieve Methods, Exponential Sums and Their Application in Number Theory, G. R. H. Greaves et al. (eds.), Cambridge Univ. Press, 1996, 1-54. | Zbl 0929.11042

[001] [2] J. B. Friedlander and D. A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short intervals, Illinois J. Math. 39 (1995), 158-180. | Zbl 0814.11048

[002] [3] D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285-297. | Zbl 0719.11065

[003] [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, 1974.

[004] [5] I. Kátai, A remark on a paper of Yu. V. Linnik, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99-100 (in Hungarian).

[005] [6] A. Languasco, A conditional result on Goldbach numbers in short intervals, Acta Arith., this volume, 93-103.

[006] [7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. | Zbl 0301.10043

[007] [8] K. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math. France 105 (1977), 433-437. | Zbl 0381.10031

[008] [9] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. E. Cartan 13, 1990.

[009] [10] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag Wiss., 1963. | Zbl 0146.06003