On the distribution of primitive roots mod p
Cristian Cobeli ; Alexandru Zaharescu
Acta Arithmetica, Tome 84 (1998), p. 143-153 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207111
@article{bwmeta1.element.bwnjournal-article-aav83i2p143bwm,
     author = {Cristian Cobeli and Alexandru Zaharescu},
     title = {On the distribution of primitive roots mod p},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {143-153},
     zbl = {0892.11003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p143bwm}
}
Cristian Cobeli; Alexandru Zaharescu. On the distribution of primitive roots mod p. Acta Arithmetica, Tome 84 (1998) pp. 143-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav83i2p143bwm/

[000] [1] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192. | Zbl 0106.04003

[001] [2] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 4-9. | Zbl 0346.10024

[002] [3] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338. | Zbl 0739.11033

[003] [4] C. Hooley, On the intervals between consecutive terms of sequences, in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., 1973, 129-140.

[004] [5] J. Johnsen, On the distribution of powers in finite fields, J. Reine Angew. Math. 253 (1971), 10-19. | Zbl 0237.10026

[005] [6] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. (2) 14 (1915), 347-409. | Zbl 45.1248.01

[006] [7] B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl 0122.05001

[007] [8] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. | Zbl 0032.26102