Prime divisors of Lucas sequences
Pieter Moree ; Peter Stevenhagen
Acta Arithmetica, Tome 80 (1997), p. 403-410 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207101
@article{bwmeta1.element.bwnjournal-article-aav82i4p403bwm,
     author = {Pieter Moree and Peter Stevenhagen},
     title = {Prime divisors of Lucas sequences},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {403-410},
     zbl = {0913.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i4p403bwm}
}
Pieter Moree; Peter Stevenhagen. Prime divisors of Lucas sequences. Acta Arithmetica, Tome 80 (1997) pp. 403-410. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i4p403bwm/

[000] [1] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 551 (1995).

[001] [2] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a≠0 von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 166 (1966), 19-23. | Zbl 0139.27501

[002] [3] J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461; Errata: Pacific J. Math. 162 (1994), 393-397. | Zbl 0569.10003

[003] [4] P. Moree, On the prime density of Lucas sequences, J. Théor. Nombres Bordeaux 8 (1996), 449-459. | Zbl 0873.11058

[004] [5] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1995. | Zbl 0856.11001

[005] [6] P. Stevenhagen, Prime densities for second order torsion sequences, preprint.