Gauss sums for orthogonal groups over a finite field of characteristic two
Dae San Kim ; Young Ho Park
Acta Arithmetica, Tome 80 (1997), p. 331-357 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207096
@article{bwmeta1.element.bwnjournal-article-aav82i4p331bwm,
     author = {Dae San Kim and Young Ho Park},
     title = {Gauss sums for orthogonal groups over a finite field of characteristic two},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {331-357},
     zbl = {0881.11082},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i4p331bwm}
}
Dae San Kim; Young Ho Park. Gauss sums for orthogonal groups over a finite field of characteristic two. Acta Arithmetica, Tome 80 (1997) pp. 331-357. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i4p331bwm/

[000] [1] A. A. Albert, Symmetric and alternate matrices in an arbitrary field I, Trans. Amer. Math. Soc. 43 (1938), 386-436. | Zbl 0018.34202

[001] [2] P. G. Buckhiester, Gauss sums and the number of solutions to the matrix equation XAXT=0 over GF(2y), Acta Arith. 23 (1973), 271-278. | Zbl 0233.15014

[002] [3] D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel), to appear. | Zbl 1036.11528

[003] [4] D. S. Kim, Gauss sums for O(2n+1,q), submitted. | Zbl 0937.11058

[004] [5] D. S. Kim, Gauss sums for O¯(2n,q), Acta Arith. 80 (1997), 343-365.

[005] [6] D. S. Kim, Gauss sums for U(2n,q²), Glasgow Math. J., to appear.

[006] [7] D. S. Kim, Gauss sums for U(2n+1,q²), submitted. | Zbl 1036.11527

[007] [8] D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math., to appear. | Zbl 1036.11529

[008] [9] D. S. Kim and I.-S. Lee, Gauss sums for O⁺(2n,q), Acta Arith. 78 (1996), 75-89.

[009] [10] F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152-164. | Zbl 0186.33702

[010] [11] Z.-X. Wan, Geometry of Classical Groups over Finite Fields, Studentlitteratur, Lund, 1993. | Zbl 0817.51001