On the irreducibility of some polynomials in two variables
B. Brindza ; Á. Pintér
Acta Arithmetica, Tome 80 (1997), p. 303-307 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207094
@article{bwmeta1.element.bwnjournal-article-aav82i3p303bwm,
     author = {B. Brindza and \'A. Pint\'er},
     title = {On the irreducibility of some polynomials in two variables},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {303-307},
     zbl = {0922.11018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p303bwm}
}
B. Brindza; Á. Pintér. On the irreducibility of some polynomials in two variables. Acta Arithmetica, Tome 80 (1997) pp. 303-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p303bwm/

[000] [BS] R. Balasubramanian and T. N. Shorey, On the equation f(x+1)...f(x+k) = f(y+1)...f(y+mk), Indag. Math. (N.S.) 4 (1993), 257-267. | Zbl 0795.11015

[001] [DLS] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x)=g(y), Quart. J. Math. 12 (1961), 304-312. | Zbl 0121.28403

[002] [MB] R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull. 13 (1970), 255-259. | Zbl 0206.05602

[003] [SS] N. Saradha and T. N. Shorey, The equations (x+1)...(x+k) = (y+1)...(y+mk) with m=3,4, Indag. Math. (N.S.) 2 (1991), 489-510. | Zbl 0757.11010

[004] [SST1] N. Saradha, T. N. Shorey and R. Tijdeman, On the equation x(x+1)...(x+k-1) = y(y+d) ...(y+(mk-1)d), m=1,2, Acta Arith. 71 (1995), 181-196. | Zbl 0828.11016

[005] [SST2] N. Saradha, T. N. Shorey and R. Tijdeman, On arithmetic progressions with equal products, Acta Arith. 68 (1994), 89-100. | Zbl 0812.11023

[006] [S1] A. Schinzel, An improvement of Runge's theorem on diophantine equations, Comment. Pontific. Acad. Sci. 2 (1969), no. 20, 1-9.

[007] [S2] A. Schinzel, Reducibility of polynomials of the form f(x)-g(y), Colloq. Math. 18 (1967), 213-218. | Zbl 0153.37203

[008] [Sh] T. N. Shorey, On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except for 8·9·10=6! and related questions, in: Number Theory (Paris, 1992-93), London Math. Soc. Lecture Note Ser. 215, Cambridge Univ. Press, Cambridge, 1995, 231-244. | Zbl 0829.11015

[009] [ST] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986.

[010] [Y] P. Z. Yuan, On a special Diophantine equation axn=byr+c, Publ. Math. Debrecen 44 (1994), 137-143. | Zbl 0821.11023