The classical system of functional equations (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to (n ∈ ℕ) with complex valued sequences . This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.
@article{bwmeta1.element.bwnjournal-article-aav82i3p257bwm, author = {Lutz G. Lucht}, title = {Arithmetical aspects of certain functional equations}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {257-277}, zbl = {0901.11001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p257bwm} }
Lutz G. Lucht. Arithmetical aspects of certain functional equations. Acta Arithmetica, Tome 80 (1997) pp. 257-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p257bwm/
[00000] [1] E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964. | Zbl 0144.06802
[00001] [2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, London, 1960. | Zbl 0086.25803
[00002] [3] D. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179-202. | Zbl 0409.12021
[00003] [4] M. Kuczma, Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warszawa, 1968.
[00004] [5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, London, 1986. | Zbl 0629.12016
[00005] [6] L. G. Lucht, Arithmetical sequences and systems of functional equations, Aequationes Math. 53 (1997), 73-90. | Zbl 0881.39021
[00006] [7] C. Methfessel, Multiplicative and additive recurrent sequences, Arch. Math. (Basel) 63 (1994), 321-328. | Zbl 0812.11014
[00007] [8] J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281-322. | Zbl 0557.10031
[00008] [9] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
[00009] [10] T. Popoviciu, Remarques sur la définition fonctionnelle d'un polynôme d'une variable réelle, Mathematica (Cluj) 12 (1936), 5-12. | Zbl 0015.34403
[00010] [11] W. Rudin, Real and Complex Analysis, McGraw-Hill, London, 1970. | Zbl 0954.26001
[00011] [12] M. F. Yoder, Continuous replicative functions, Aequationes Math. 13 (1975), 251-261. | Zbl 0333.39007