@article{bwmeta1.element.bwnjournal-article-aav82i3p243bwm, author = {Michael Filaseta and Ikhalfani Solan}, title = {Norms of factors of polynomials}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {243-255}, zbl = {0892.11008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p243bwm} }
Michael Filaseta; Ikhalfani Solan. Norms of factors of polynomials. Acta Arithmetica, Tome 80 (1997) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p243bwm/
[000] [1] D. Boyd, Two sharp inequalities for the norm of a factor of a polynomial, Mathematika 39 (1992), 341-349. | Zbl 0758.30003
[001] [2] J. Donaldson and Q. Rahman, Inequalities for polynomials with a prescribed zero, Pacific J. Math. 41 (1972), 375-378. | Zbl 0235.30001
[002] [3] A. Durand, Quelques aspects de la théorie analytique des polynômes I, II, in: Cinquante ans de polynômes (Paris, 1988), Lecture Notes in Math. 1415, Springer, Berlin, 1990, 1-42, 43-85.
[003] [4] M. Filaseta, M. Robinson and F. Wheeler, The minimal Euclidean norm of an algebraic number is effectively computable, J. Algorithms 16 (1994), 309-333. | Zbl 0795.11064
[004] [5] P. Glesser, Nouvelle majoration de la norme des facteurs d'un polynôme, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), 224-228. | Zbl 0729.12001
[005] [6] A. Granville, Bounding the coefficients of a divisor of a given polynomial, Monatsh. Math. 109 (1990), 271-277. | Zbl 0713.12001
[006] [7] R. Kannan, A. Lenstra and L. Lovász, Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers, Math. Comp. 50 (1988), 235-250. | Zbl 0654.12001
[007] [8] M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153-1157. | Zbl 0299.12101
[008] [9] A. Schinzel, Reducibility of lacunary polynomials I, Acta Arith. 16 (1969/70), 123-159.
[009] [10] A. Schinzel, Reducibility of lacunary polynomials, in: Proc. Sympos. Pure Math. 20, D. J. Lewis (ed.), Amer. Math. Soc., Providence, 1971, 135-149.
[010] [11] J. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948.