The ternary Goldbach problem in arithmetic progressions
Jianya Liu ; Tao Zhan
Acta Arithmetica, Tome 80 (1997), p. 197-227 / Harvested from The Polish Digital Mathematics Library

For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and (N,r)=b³:1bjr,(bj,r)=1andb+b+bN(modr).It is known that    (N,r)=r²p|rp|N((p-1)(p-2)/p²)p|rpN((p²-3p+3)/p²). Let ε > 0 be arbitrary and R=N1/8-ε. We prove that for all positive integers r ≤ R, with at most O(Rlog-AN) exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ pjbj(modr), j = 1,2,3,⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207088
@article{bwmeta1.element.bwnjournal-article-aav82i3p197bwm,
     author = {Jianya Liu and Tao Zhan},
     title = {The ternary Goldbach problem in arithmetic progressions},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {197-227},
     zbl = {0889.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p197bwm}
}
Jianya Liu; Tao Zhan. The ternary Goldbach problem in arithmetic progressions. Acta Arithmetica, Tome 80 (1997) pp. 197-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i3p197bwm/

[00000] [A] Ayoub R., On Rademacher's extension of the Goldbach-Vinogradov theorem, Trans. Amer. Math. Soc. 74 (1953), 482-491. | Zbl 0050.27001

[00001] [B] Balog A., The prime k-tuplets conjecture on average, in: Analytic Number Theory (Allerton Park, Ill.), Birkhäuser, 1990, 47-75.

[00002] [BP] Balog A. and Perelli A., Exponential sums over primes in an arithmetic progression, Proc. Amer. Math. Soc. 93 (1985), 578-582. | Zbl 0524.10030

[00003] [D] Davenport H., Multiplicative Number Theory, revised by H. L. Montgomery, Springer, 1980. | Zbl 0453.10002

[00004] [HL] Hardy G. H. and Littlewood J. E., Some problems of 'partitio numerorumi' III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70. | Zbl 48.0143.04

[00005] [La] Lavrik A. F., The number of k-twin primes lying on an interval of a given length, Dokl. Akad. Nauk SSSR 136 (1961), 281-283 (in Russian); English transl.: Soviet Math. Dokl. 2 (1961), 52-55.

[00006] [Li] Liu J. Y., The Goldbach-Vinogradov theorem with primes in a thin subset, Chinese Ann. Math., to appear.

[00007] [LT] Liu M. C. and Tsang K. M., Small prime solutions of linear equations, in: Théorie des Nombres, J.-M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 595-624.

[00008] [MP] Maier H. and Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 332 (1990), 201-237. | Zbl 0706.11052

[00009] [Mi] Mikawa H., On prime twins in arithmetic progressions, Tsukuba J. Math. 16 (1992), 377-387. | Zbl 0778.11053

[00010] [Mo] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. | Zbl 0216.03501

[00011] [R] Rademacher H., Über eine Erweiterung des Goldbachschen Problems, Math. Z. 25 (1926), 627-660. | Zbl 52.0167.04

[00012] [T] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986. | Zbl 0601.10026

[00013] [Va] Vaughan R. C., An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, 1981, 341-348.

[00014] [Vi] Vinogradov I. M., Some theorems concerning the theory of primes, Mat. Sb. (N.S.) 2 (1937), 179-195. | Zbl 0017.19803

[00015] [W] Wolke D., Some applications to zero-density theorems for L-functions, Acta Math. Hungar. 61 (1993), 241-258. | Zbl 0790.11075

[00016] [Zh] Zhan T., On the representation of odd number as sums of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 259-275.

[00017] [ZL] Zhan T. and Liu J. Y., A Bombieri-type mean-value theorem concerning exponential sums over primes, Chinese Sci. Bull. 41 (1996), 363-366. | Zbl 0851.11048

[00018] [Zu] Zulauf A., Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov, J. Reine Angew. Math. 190 (1952), 169-198. | Zbl 0048.27603