@article{bwmeta1.element.bwnjournal-article-aav82i2p173bwm, author = {St\'ephane Louboutin}, title = {The class number one problem for the non-abelian normal CM-fields of degree 16}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {173-196}, zbl = {0881.11079}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p173bwm} }
Stéphane Louboutin. The class number one problem for the non-abelian normal CM-fields of degree 16. Acta Arithmetica, Tome 80 (1997) pp. 173-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p173bwm/
[000] [CH] P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Sci., Singapore, 1988.
[001] [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. | Zbl 0474.12009
[002] [Lef] Y. Lefeuvre, The class number one problem for dihedral CM-fields, in preparation.
[003] [Lem] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, to appear. | Zbl 0890.11031
[004] [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, in preparation. | Zbl 1010.11063
[005] [Lou 1] S. Louboutin, Majorations explicites de ∣L(1,χ)∣, C. R. Acad. Sci. Paris 316 (1993), 11-14. | Zbl 0774.11051
[006] [Lou 2] S. Louboutin, On the class number one problem for non-normal quartic CM-fields, Tôhoku Math. J. 46 (1994), 1-12.
[007] [Lou 3] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), 425-434. | Zbl 0795.11058
[008] [Lou 4] S. Louboutin, Calcul du nombre de classes des corps de nombres, Pacific J. Math. 171 (1995), 455-467.
[009] [Lou 5] S. Louboutin, Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith. 74 (1996), 121-140.
[010] [Lou 6] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227-238. | Zbl 0861.11064
[011] [Lou 7] S. Louboutin, Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, to appear.
[012] [Lou 8] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory, to appear. | Zbl 0881.11078
[013] [LouOka 1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. | Zbl 0809.11069
[014] [LouOka 2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., to appear. | Zbl 0891.11054
[015] [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., to appear. | Zbl 0893.11045
[016] [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. | Zbl 0299.12010
[017] [Uch] K. Uchida, Imaginary abelian number fields with class number one, Tôhoku Math. J. 24 (1972), 487-499. | Zbl 0248.12007
[018] [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
[019] [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921. | Zbl 0798.11046
[020] [YPJK] H. S. Yang, Y. H. Park, S. W. Jung and S. H. Kwon, Determination of all octic dihedral CM-fields with class number two, preprint, 1996.