@article{bwmeta1.element.bwnjournal-article-aav82i2p147bwm, author = {N. Saradha}, title = {On perfect powers in products with terms from arithmetic progressions}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {147-172}, zbl = {0922.11025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p147bwm} }
N. Saradha. On perfect powers in products with terms from arithmetic progressions. Acta Arithmetica, Tome 80 (1997) pp. 147-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p147bwm/
[000] [1] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.
[001] [2] P. Erdős, On a Diophantine equation, J. London Math. Soc. 26 (1951), 176-178. | Zbl 0043.04309
[002] [3] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301. | Zbl 0295.10017
[003] [4] D. H. Lehmer, List of prime numbers from 1 to 10006721, Carnegie Institution of Washington, Publication No. 165, 1914.
[004] [5] D. S. Mitrinović, J. Sandor and B. Cristici, Handbook of Number Theory, Kluwer, 1996.
[005] [6] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl 0122.05001
[006] [7] T. N. Shorey and Yu. V. Nesterenko, Perfect powers in products of integers from a block of consecutive integers (II), Acta Arith. 76 (1996), 191-198. | Zbl 0859.11025
[007] [8] T. N. Shorey and R. Tijdeman, Some methods of Erdős applied to finite arithmetic progressions, in: The Mathematics of Paul Erdős I, R. L. Graham and J. Nešetřil (eds.), Springer, 1997, 251-267. | Zbl 0874.11035
[008] [9] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal (eds.), Cambridge University Press, 1990, 385-389. | Zbl 0709.11004
[009] [10] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344. | Zbl 0708.11021