On double covers of the generalized alternating group dm as Galois groups over algebraic number fields
Martin Epkenhans
Acta Arithmetica, Tome 80 (1997), p. 129-145 / Harvested from The Polish Digital Mathematics Library

Let dmbethegeneralizedalternatinggroup.Weprovethatalldoublecoversofℤd ≀ moccurasGaloisgroupsoveranyalgebraicnumberfield.WefurtherrealizesomeofthesedoublecoversastheGaloisgroupsofregularextensionsof(T).Ifdisoddandm>7,theneverycentralextensionofℤd ≀ moccursastheGaloisgroupofaregularextensionof(T).Wefurtherimprovesomeofourearlierresultsconcerningdoublecoversofthegeneralizedsymmetricgroupℤd ≀ m.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207085
@article{bwmeta1.element.bwnjournal-article-aav82i2p129bwm,
     author = {Martin Epkenhans},
     title = {On double covers of the generalized alternating group $Z\_d [?] \_m$ as Galois groups over algebraic number fields},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {129-145},
     zbl = {0881.12003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p129bwm}
}
Martin Epkenhans. On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields. Acta Arithmetica, Tome 80 (1997) pp. 129-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i2p129bwm/

[000] [1] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982.

[001] [2] M. Epkenhans, On the Galois group of f(Xd), Comm. Algebra, to appear.

[002] [3] M. Epkenhans, Trace forms of trinomials, J. Algebra 155 (1993), 211-220. | Zbl 0777.11010

[003] [4] M. Epkenhans, On double covers of the generalized symmetric group dm as Galois groups over algebraic number fields K with μdK, J. Algebra 163 (1994), 404-423.

[004] [5] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967.

[005] [6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131. | Zbl 0095.02901

[006] [7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987. | Zbl 0619.20001

[007] [8] D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198. | Zbl 0679.12011

[008] [9] S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972. | Zbl 0247.14001

[009] [10] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987.

[010] [11] J. F. Mestre, Extensions régulières de ℚ(T) de groupe de Galois Ãn, J. Algebra 131 (1990), 483-495. | Zbl 0714.11074

[011] [12] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.

[012] [13] M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250. | Zbl 0666.12004

[013] [14] J. P. Serre, Corps Locaux, Hermann, Paris, 1968. | Zbl 0137.02501

[014] [15] J. P. Serre, L’invariant de Witt de la forme Tr(x2), Comment. Math. Helv. 59 (1984), 651-676.

[015] [16] J. P. Serre, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992. | Zbl 0746.12001

[016] [17] J. Sonn, Central extensions of Sn as Galois groups via trinomials, J. Algebra 125 (1989), 320-330. | Zbl 0697.12008

[017] [18] J. Sonn, Central extensions of S_n as Galois groups of regular extensions of ℚ(T), J. Algebra 140 (1991), 355-359. | Zbl 0824.12002

[018] [19] N. Vila, On central extensions of An as Galois group over ℚ, Arch. Math. (Basel) 44 (1985), 424-437. | Zbl 0562.12011

[019] [20] N. Vila, On stem extensions of Sn as Galois group over number fields, J. Algebra 116 (1988), 251-260. | Zbl 0662.12011

[020] [21] H. Völklein, Central extensions as Galois groups, J. Algebra 146 (1992), 144-152. | Zbl 0756.12005