@article{bwmeta1.element.bwnjournal-article-aav82i1p69bwm, author = {P. G. Walsh}, title = {On integer solutions to x$^2$ - dy$^2$ = 1, z$^2$ - 2dy$^2$ =1}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {69-76}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p69bwm} }
P. G. Walsh. On integer solutions to x² - dy² = 1, z² - 2dy² =1. Acta Arithmetica, Tome 80 (1997) pp. 69-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p69bwm/
[000] [1] M. A. Bennett, On the number of solutions to simultaneous Pell equations, J. Reine Angew. Math., to appear. | Zbl 1044.11011
[001] [2] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. | Zbl 0136.02806
[002] [3] J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70. | Zbl 0169.37401
[003] [4] J. H. E. Cohn, The Diophantine equation x⁴-Dy²=1, II, Acta Arith. 78 (1997), 401-403. | Zbl 0870.11018
[004] [5] W. Ljunggren, Zur Theorie der Gleichung x²+1=Dy⁴, Avh. Norske Vid. Akad. Oslo (1942), 1-27.
[005] [6] D. W. Masser, Open Problems, in: Proc. Sympos. Analytic Number Theory, W. W. L. Chen (ed.), London Imperial College, 1985.
[006] [7] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
[007] [8] N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. (4) 22 (1984), 340-348.
[008] [9] P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin, Boston, 1970.
[009] [10] W. Sierpiński, Elementary Theory of Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1964. | Zbl 0122.04402
[010] [11] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers III, J. London Math. Soc. (2) 28 (1983), 211-217. | Zbl 0491.10010