On integer solutions to x² - dy² = 1, z² - 2dy² =1
P. G. Walsh
Acta Arithmetica, Tome 80 (1997), p. 69-76 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207079
@article{bwmeta1.element.bwnjournal-article-aav82i1p69bwm,
     author = {P. G. Walsh},
     title = {On integer solutions to x$^2$ - dy$^2$ = 1, z$^2$ - 2dy$^2$ =1},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {69-76},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p69bwm}
}
P. G. Walsh. On integer solutions to x² - dy² = 1, z² - 2dy² =1. Acta Arithmetica, Tome 80 (1997) pp. 69-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p69bwm/

[000] [1] M. A. Bennett, On the number of solutions to simultaneous Pell equations, J. Reine Angew. Math., to appear. | Zbl 1044.11011

[001] [2] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. | Zbl 0136.02806

[002] [3] J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70. | Zbl 0169.37401

[003] [4] J. H. E. Cohn, The Diophantine equation x⁴-Dy²=1, II, Acta Arith. 78 (1997), 401-403. | Zbl 0870.11018

[004] [5] W. Ljunggren, Zur Theorie der Gleichung x²+1=Dy⁴, Avh. Norske Vid. Akad. Oslo (1942), 1-27.

[005] [6] D. W. Masser, Open Problems, in: Proc. Sympos. Analytic Number Theory, W. W. L. Chen (ed.), London Imperial College, 1985.

[006] [7] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.

[007] [8] N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. (4) 22 (1984), 340-348.

[008] [9] P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin, Boston, 1970.

[009] [10] W. Sierpiński, Elementary Theory of Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1964. | Zbl 0122.04402

[010] [11] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers III, J. London Math. Soc. (2) 28 (1983), 211-217. | Zbl 0491.10010