A note on Sinnott's index formula
Kazuhiro Dohmae
Acta Arithmetica, Tome 80 (1997), p. 57-67 / Harvested from The Polish Digital Mathematics Library

Let k be an (imaginary or real) abelian number field whose conductor has two distinct prime divisors. We shall construct a basis for the group C of circular units in k and compute the index of C in the group E of units in k. This result is a generalization of Theorem 3.3 in a previous paper [1].

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207078
@article{bwmeta1.element.bwnjournal-article-aav82i1p57bwm,
     author = {Kazuhiro Dohmae},
     title = {A note on Sinnott's index formula},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {57-67},
     zbl = {0887.11046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p57bwm}
}
Kazuhiro Dohmae. A note on Sinnott's index formula. Acta Arithmetica, Tome 80 (1997) pp. 57-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p57bwm/

[000] [1] K. Dohmae, On bases of groups of circular units of some imaginary abelian number fields, J. Number Theory 61 (1996), 343-364. | Zbl 0869.11082

[001] [2] R. Gold and J. Kim, Bases for cyclotomic units, Compositio Math. 71 (1989), 13-28. | Zbl 0687.12003

[002] [3] R. Kučera, On bases of odd and even universal ordinary distributions, J. Number Theory 40 (1992), 264-283. | Zbl 0744.11051

[003] [4] R. Kučera, On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field, J. Number Theory., 284-316. | Zbl 0744.11052

[004] [5] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134. | Zbl 0395.12014

[005] [6] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001

[006] [7] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, New York, 1980.