@article{bwmeta1.element.bwnjournal-article-aav82i1p1bwm, author = {S. D. Cohen and A. Movahhedi and A. Salinier}, title = {Double transitivity of Galois groups of trinomials}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {1-15}, zbl = {0893.11046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p1bwm} }
S. D. Cohen; A. Movahhedi; A. Salinier. Double transitivity of Galois groups of trinomials. Acta Arithmetica, Tome 80 (1997) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p1bwm/
[000] [1] M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60. | Zbl 0302.20001
[001] [2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22. | Zbl 0463.20003
[002] [3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967.
[003] [4] S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49. | Zbl 0716.12004
[004] [5] C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338.
[005] [6] K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60. | Zbl 0734.11063
[006] [7] K. Komatsu, On the Galois group of , Tokyo J. Math. 14 (1991), 227-229. | Zbl 0734.11062
[007] [8] K. Komatsu, On the Galois group of , Tokyo J. Math. 15 (1992), 351-356. | Zbl 0780.11049
[008] [9] R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128. | Zbl 0338.20002
[009] [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.) | Zbl 0554.12010
[010] [11] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373. | Zbl 0493.12010
[011] [12] A. Movahhedi, Galois group of , J. Algebra 180 (1996), 966-975. | Zbl 0863.12003
[012] [13] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440. | Zbl 0862.11063
[013] [14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990. | Zbl 0717.11045
[014] [15] P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281. | Zbl 0555.20003
[015] [16] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117. | Zbl 54.0191.02
[016] [17] H. Osada, The Galois groups of the polynomials , J. Number Theory 25 (1987), 230-238. | Zbl 0608.12010
[017] [18] H. Osada, The Galois groups of the polynomials . II, Tôhoku Math. J. 39 (1987), 437-445. | Zbl 0615.12012
[018] [19] J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992.
[019] [20] L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281. | Zbl 0579.12006
[020] [21] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. | Zbl 0113.01701
[021] [22] W. Trinks, Arithmetisch ähnliche Zahlkörper, Diplomarbeit, Math. Fak. Univ. Karlsruhe (TH), 1969.
[022] [23] H. Wielandt, Finite Permutation Groups, Academic Press, 1964.