Double transitivity of Galois groups of trinomials
S. D. Cohen ; A. Movahhedi ; A. Salinier
Acta Arithmetica, Tome 80 (1997), p. 1-15 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207075
@article{bwmeta1.element.bwnjournal-article-aav82i1p1bwm,
     author = {S. D. Cohen and A. Movahhedi and A. Salinier},
     title = {Double transitivity of Galois groups of trinomials},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {1-15},
     zbl = {0893.11046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p1bwm}
}
S. D. Cohen; A. Movahhedi; A. Salinier. Double transitivity of Galois groups of trinomials. Acta Arithmetica, Tome 80 (1997) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p1bwm/

[000] [1] M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60. | Zbl 0302.20001

[001] [2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22. | Zbl 0463.20003

[002] [3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967.

[003] [4] S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49. | Zbl 0716.12004

[004] [5] C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338.

[005] [6] K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60. | Zbl 0734.11063

[006] [7] K. Komatsu, On the Galois group of xp+ax+a=0, Tokyo J. Math. 14 (1991), 227-229. | Zbl 0734.11062

[007] [8] K. Komatsu, On the Galois group of xp+ptb(x+1)=0, Tokyo J. Math. 15 (1992), 351-356. | Zbl 0780.11049

[008] [9] R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128. | Zbl 0338.20002

[009] [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.) | Zbl 0554.12010

[010] [11] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373. | Zbl 0493.12010

[011] [12] A. Movahhedi, Galois group of xp+ax+a, J. Algebra 180 (1996), 966-975. | Zbl 0863.12003

[012] [13] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440. | Zbl 0862.11063

[013] [14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990. | Zbl 0717.11045

[014] [15] P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281. | Zbl 0555.20003

[015] [16] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117. | Zbl 54.0191.02

[016] [17] H. Osada, The Galois groups of the polynomials xn+axl+b, J. Number Theory 25 (1987), 230-238. | Zbl 0608.12010

[017] [18] H. Osada, The Galois groups of the polynomials xn+axs+b. II, Tôhoku Math. J. 39 (1987), 437-445. | Zbl 0615.12012

[018] [19] J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992.

[019] [20] L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281. | Zbl 0579.12006

[020] [21] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. | Zbl 0113.01701

[021] [22] W. Trinks, Arithmetisch ähnliche Zahlkörper, Diplomarbeit, Math. Fak. Univ. Karlsruhe (TH), 1969.

[022] [23] H. Wielandt, Finite Permutation Groups, Academic Press, 1964.