1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation (1) , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1, has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows. Theorem. Equation (1) has only the solution (x,y,m,n)=(7,20,1,2).
@article{bwmeta1.element.bwnjournal-article-aav82i1p17bwm, author = {Maohua Le}, title = {On the diophantine equation $(x^m + 1)(x^n + 1) = y$^2$$ }, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {17-26}, zbl = {0893.11013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p17bwm} }
Maohua Le. On the diophantine equation $(x^m + 1)(x^n + 1) = y²$ . Acta Arithmetica, Tome 80 (1997) pp. 17-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav82i1p17bwm/
[00000] [1] C. Ko, On the diophantine equation , xy ≠ 0, Sci. Sinica 14 (1964), 457-460.
[00001] [2] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. | Zbl 0843.11036
[00002] [3] M.-H. Le, A note on the diophantine equation x²p - Dy² = 1, Proc. Amer. Math. Soc. 107 (1989), 27-34.
[00003] [4] W. Ljunggren, Zur Theorie der Gleichung x²+1 = Dy⁴, Avh. Norske Vid. Akad. Oslo I 5 (1942), no. 5, 27 pp. | Zbl 0027.01103
[00004] [5] W. Ljunggren, Sätze über unbestimmte Gleichungen, Skr. Norske Vid. Akad. Oslo I (1942), no. 9, 53 pp.
[00005] [6] W. Ljunggren, Noen setninger om ubestemte likninger av formen , Norsk. Mat. Tidsskr. 25 (1943), 17-20.
[00006] [7] P. Ribenboim, Square classes of and , Sichuan Daxue Xuebao, Special Issue, 26 (1989), 196-199. | Zbl 0709.11014
[00007] [8] N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. 22 (1984), 340-348.
[00008] [9] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187. | Zbl 0519.10004