Normality of numbers generated by the values of polynomials at primes
Yoshinobu Nakai ; Iekata Shiokawa
Acta Arithmetica, Tome 80 (1997), p. 345-356 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207069
@article{bwmeta1.element.bwnjournal-article-aav81i4p345bwm,
     author = {Yoshinobu Nakai and Iekata Shiokawa},
     title = {Normality of numbers generated by the values of polynomials at primes},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {345-356},
     zbl = {0881.11062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i4p345bwm}
}
Yoshinobu Nakai; Iekata Shiokawa. Normality of numbers generated by the values of polynomials at primes. Acta Arithmetica, Tome 80 (1997) pp. 345-356. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i4p345bwm/

[000] [1] A. H. Copeland and P. Erdős, Notes on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857-860. | Zbl 0063.00962

[001] [2] H. Davenport and P. Erdős, Note on normal decimals, Canad. J. Math. 4 (1952), 58-63. | Zbl 0046.04902

[002] [3] L.-K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monograph 13, Amer. Math. Soc., Providence, RI, 1965. | Zbl 0192.39304

[003] [4] M. N. Huxley, The Distribution of Prime Numbers, Oxford Math. Monograph, Oxford Univ. Press, 1972. | Zbl 0248.10030

[004] [5] Y.-N. Nakai and I. Shiokawa, A class of normal numbers, Japan. J. Math. 16 (1990), 17-29.

[005] [6] Y.-N. Nakai and I. Shiokawa, A class of normal numbers II, in: Number Theory and Cryptography, J. H. Loxton (ed.), London Math. Soc. Lecture Note Ser. 154, Cambridge Univ. Press, 1990, 204-210.

[006] [7] Y.-N. Nakai and I. Shiokawa, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (1992), 271-284.

[007] [8] J. Schiffer, Discrepancy of normal numbers, ibid. 47 (1986), 175-186.

[008] [9] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986. | Zbl 0601.10026

[009] [10] I. M. Vinogradov, The Method of Trigonometrical, Sums in Number Theory, Nauka, 1971 (in Russian).