Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points
Jiryo Komeda
Acta Arithmetica, Tome 80 (1997), p. 275-297 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207066
@article{bwmeta1.element.bwnjournal-article-aav81i3p275bwm,
     author = {Jiryo Komeda},
     title = {Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {275-297},
     zbl = {0938.14012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p275bwm}
}
Jiryo Komeda. Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points. Acta Arithmetica, Tome 80 (1997) pp. 275-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p275bwm/

[000] [1] M. Coppens, The Weierstrass gap sequences of the total ramification points of trigonal coverings of ℙ¹, Indag. Math. 47 (1985), 245-276. | Zbl 0592.14025

[001] [2] T. Kato, On Weierstrass points whose first non-gaps are three, J. Reine Angew. Math. 316 (1980), 99-109. | Zbl 0419.30037

[002] [3] T. Kato and R. Horiuchi, Weierstrass gap sequences at the ramification points of trigonal Riemann surfaces, J. Pure Appl. Algebra 50 (1988), 271-285. | Zbl 0649.14009

[003] [4] J. Komeda, On Weierstrass points whose first non-gaps are four, J. Reine Angew. Math. 341 (1983), 68-86. | Zbl 0498.30053

[004] [5] J. Komeda, Numerical semigroups and non-gaps of Weierstrass points, Res. Rep. Ikutoku Tech. Univ. B-9 (1985), 89-94.

[005] [6] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8, J. Pure Appl. Algebra 97 (1994), 51-71. | Zbl 0849.14011

[006] [7] J. Komeda, Non-Weierstrass numerical semigroups, preprint. | Zbl 0922.14022

[007] [8] I. Kuribayashi and K. Komiya, Automorphisms of a compact Riemann surface with one fixed point, Res. Rep. Fac. Educ. Yamanashi Univ. 34 (1983), 5-9.

[008] [9] H. Pinkham, Deformations of algebraic varieties with Gm action, Astérisque 20 (1974), 1-131. | Zbl 0304.14006