Tate-Shafarevich groups of the congruent number elliptic curves
Ken Ono
Acta Arithmetica, Tome 80 (1997), p. 247-252 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207063
@article{bwmeta1.element.bwnjournal-article-aav81i3p247bwm,
     author = {Ken Ono},
     title = {Tate-Shafarevich groups of the congruent number elliptic curves},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {247-252},
     zbl = {0886.11038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p247bwm}
}
Ken Ono. Tate-Shafarevich groups of the congruent number elliptic curves. Acta Arithmetica, Tome 80 (1997) pp. 247-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p247bwm/

[000] [B-E-W] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley, to appear. | Zbl 0906.11001

[001] [C] J. E. Cremona, Algorithms for Elliptic Curves, Cambridge Univ. Press, 1992. | Zbl 0758.14042

[002] [D] L. E. Dickson, History of the Theory of Numbers, Vol. 3, G. E. Strechert & Co., 1934. | Zbl 60.0817.03

[003] [J] N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves, preprint. | Zbl 0536.10022

[004] [M-O] Y. Martin and K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc., to appear. | Zbl 0894.11020

[005] [O-S] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms mod l, preprint. | Zbl 0907.11017

[006] [R] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560. | Zbl 0628.14018

[007] [S] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. | Zbl 0585.14026

[008] [T] J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334. | Zbl 0515.10013