@article{bwmeta1.element.bwnjournal-article-aav81i3p229bwm, author = {Roy Maltby}, title = {Root systems and the Erd\H os-Szekeres Problem}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {229-245}, zbl = {0881.11030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p229bwm} }
Roy Maltby. Root systems and the Erdős-Szekeres Problem. Acta Arithmetica, Tome 80 (1997) pp. 229-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i3p229bwm/
[000] [A61] F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 1 (1961), 7-12. | Zbl 0119.04304
[001] [B96] P. Borwein, e-mail communication.
[002] [BI94] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott Problem revisited, Enseign. Math. 40 (1994), 3-27. | Zbl 0810.11016
[003] [C72] R. W. Carter, Simple Groups of Lie Type, Wiley, 1972.
[004] [D79] E. Dobrowolski, On a question of Lehmer and the number of irreductible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001
[005] [ES58] P. Erdős and G. Szekeres, On the product , Acad. Serbe Sci. Publ. Inst. Math. 12 (1958), 29-34.
[006] [K94] M. N. Kolountzakis, Probabilistic and Constructive Methods in Harmonic Analysis and Additive Number Theory, Ph.D. dissertation, Stanford University, 1994.
[007] [M72] I. G. MacDonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143. | Zbl 0244.17005
[008] [M96] R. Maltby, Pure Product Polynomials of Small Norm, Ph.D. dissertation, Simon Fraser University, 1996.
[009] [M97] R. Maltby, Pure product polynomials and the Prouhet-Tarry-Escott Problem, Math. Comp. (1997), to appear. | Zbl 1036.11539
[010] [M94] S. Maltby, Some optimal results related to the PTE Problem, preprint.
[011] [O82] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420. | Zbl 0476.30005
[012] [O95] A. M. Odlyzko, personal communication.