@article{bwmeta1.element.bwnjournal-article-aav81i2p145bwm, author = {Christian Mauduit and Andr\'as S\'ark\"ozy}, title = {On the arithmetic structure of the integers whose sum of digits is fixed}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {145-173}, zbl = {0887.11008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i2p145bwm} }
Christian Mauduit; András Sárközy. On the arithmetic structure of the integers whose sum of digits is fixed. Acta Arithmetica, Tome 80 (1997) pp. 145-173. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i2p145bwm/
[000] [Ell] P. D. T. A. Elliott, Probabilistic Number Theory, I, Mean-Value Theorems, Grundlehren Math. Wiss. 239, Springer, 1979.
[001] [Ell-S] P. D. T. A. Elliott and A. Sárközy, The distribution of the number of prime divisors of sums a+b, J. Number Theory 29 (1988), 94-99. | Zbl 0646.10042
[002] [Er-P-S-S] P. Erdős, C. Pomerance, A. Sárközy and C. L. Stewart, On elements of sumsets with many prime factors, ibid. 44 (1993), 93-104. | Zbl 0780.11040
[003] [Ess] C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of Laplace-Gaussian law, Acta Math. 77 (1945), 1-125. | Zbl 0060.28705
[004] [Fin] M. N. J. Fine, The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965), 2651-2652.
[005] [F-M1] E. Fouvry et C. Mauduit, Somme des chiffres et nombres presque premiers, Math. Ann. 305 (1996), 571-599.
[006] [F-M2] E. Fouvry et C. Mauduit, Crible asymptotique de Bombieri et somme des chiffres, preprint.
[007] [Gel] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265. | Zbl 0155.09003
[008] [Mau] C. Mauduit, Substitutions et ensembles normaux, Habilitation Dir. Rech., Université Aix-Marseille II, 1989.
[009] [M-S] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), 25-38. | Zbl 0868.11004
[010] [Mon] H. L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), 547-567. | Zbl 0408.10033
[011] [P-S] G. Pólya and G. Szegő, Problems and Theorems in Analysis, II, Grundlehren Math. Wiss. 216, Springer, 1976.
[012] [S-S] A. Sárközy and C. L. Stewart, On divisors of sums of integers, V, Pacific J. Math. 166 (1994), 373-384. | Zbl 0841.11049
[013] [Ten] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, 13, 1990.