Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss
Brigitte Vallée
Acta Arithmetica, Tome 80 (1997), p. 101-144 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207058
@article{bwmeta1.element.bwnjournal-article-aav81i2p101bwm,
     author = {Brigitte Vall\'ee},
     title = {Op\'erateurs de Ruelle-Mayer g\'en\'eralis\'es et analyse en moyenne des algorithmes d'Euclide et de Gauss},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {101-144},
     zbl = {0880.11059},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i2p101bwm}
}
Brigitte Vallée. Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss. Acta Arithmetica, Tome 80 (1997) pp. 101-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i2p101bwm/

[000] [Ba] K. I. Babenko, On a problem of Gauss, Soviet Math. Dokl. 19 (1978), 136-140.

[001] [Br] A. Broise, Aspects stochastiques de certains systèmes dynamiques : transformations dilatantes de l'intervalle, fractions continues multidimensionnelles, Ph.D. Thesis, Université de Rennes, 1994.

[002] [DV] H. Daudé and B. Vallée, An upper bound on the average number of iterations of the LLL algorithm, Theoret. Comput. Sci. 123 (1994), 95-115. | Zbl 0796.11024

[003] [DFV] H. Daudé, P. Flajolet and B. Vallée, An analysis of the Gaussian algorithm for lattice reduction, in: Algorithmic Number Theory (Ithaca, N.Y., 1994), Lecture Notes in Comput. Sci. 877, Springer, 1994, 144-158. Version longue en Rapport de Recherche du Laboratoire GREYC de l'université de Caen, à paraître dans Combinatorics, Probability and Computing. | Zbl 0841.11063

[004] [Di] J. H. Dixon, The number of steps in the Euclidean algorithm, J. Number Theory 2 (1970), 414-422. | Zbl 0206.33502

[005] [Fa] C. Faivre, Distribution of Lévy constants for quadratic numbers, Acta Arith. 61 (1992), 13-34. | Zbl 0749.11035

[006] [FV] P. Flajolet and B. Vallée, Continued fraction algorithms, functional operators and structure constants, Conférence invitée à la 7e Conférence Fibonacci, Graz, juillet 96, Rapport de Recherche INRIA 2931 (juillet 96). | Zbl 0981.11044

[007] [Ga] C. F. Gauss, Recherches arithmétiques, 1807, réimprimé par Blanchard, Paris, 1953.

[008] [Gr1] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[009] [Gr2] A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319-384.

[010] [Hei] H. Heilbronn, On the average length of a class of continued fractions, in: Number Theory and Analysis, P. Turán (ed.), Plenum, New York, 1969, 87-96.

[011] [He] D. Hensley, The number of steps in the Euclidean algorithm, J. Number Theory 49 (1994), 142-182. | Zbl 0811.11055

[012] [Hw] H.-K. Hwang, Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques, Ph.D. Thesis, Ecole Polytechnique, Palaiseau, 1994.

[013] [KS] M. Kaib and C. P. Schnorr, A sharp worst-case analysis of the Gaussian lattice basis reduction algorithm for any norm, J. Algorithms, to appear.

[014] [Kr] M. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Chap. 2, Noordhoff, Groningen, 1964.

[015] [Ku] R. Kuzmin [R. O. Kuz'min], Sur un problème de Gauss, Atti del Congresso internazionale dei matematici, Bologna, 1928, Vol. 6, 83-89.

[016] [Lag] J. C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic forms, J. Algorithms 1 (1980), 142-186. | Zbl 0473.68030

[017] [Lam] D. Lamé, Note sur la limite du nombre de divisions dans la recherche du plus grand commun diviseur entre deux nombres entiers, C. R. Acad. Sci. 19 (1845), 867-870.

[018] [LLL] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 513-534. | Zbl 0488.12001

[019] [Le] P. Lévy, Sur la loi de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue, Bull. Soc. Math. France 57 (1929), 178-194. | Zbl 55.0916.02

[020] [Ma1] D. H. Mayer, Continued fractions and related transformations, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford University Press, 1991, 175-222.

[021] [Ma2] D. H. Mayer, On composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 35 (1980), 191-206. | Zbl 0428.47016

[022] [Ma3] D. H. Mayer, Spectral properties of certain composition operators arising in statistical mechanics, Comm. Math. Phys. 68 (1979), 1-8.

[023] [Ma4] D. H. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys. 130 (1990), 311-333. | Zbl 0714.58018

[024] [Ma5] D. H. Mayer, Approach to equilibrium for locally expanding maps in Rk, Comm. Math. Phys. 95 (1984), 1-15.

[025] [MR] D. Mayer and G. Roepstorff, On the relaxation time of Gauss' continued fraction map. I. The Hilbert space approach, J. Statist. Phys. 47 (1987), 149-171, II. The Banach space approach (transfer operator approach), J. Statist. Phys. 50 (1988), 331-344. | Zbl 0658.10057

[026] [Mi] G. A. Misyavichyus [G. Misevičius], Estimate of the remainder in the limit theorem for the denominators of continued fractions, Litovsk. Mat. Sb. 21(3) (1987), 63-74 (in Russian).

[027] [Mo] T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition, J. Math. Soc. Japan 46 (1994), 309-343. | Zbl 0824.60017

[028] [Ph] W. Philipp, Some metrical theorems in number theory II, Duke Math. J. 37 (1970), 447-488. Errata, Duke Math. J., 788.

[029] [RS] A. Rockett and P. Szűsz, Continued Fractions, World Scientific, Singapore, 1992. | Zbl 0925.11038

[030] [Va1] B. Vallée, Gauss' algorithm revisited, J. Algorithms 12 (1991), 556-572. | Zbl 0779.11065

[031] [Va2] B. Vallée, Algorithms for computing signs of 2 × 2 determinants: dynamics and average-case algorithms, Les Cahiers Du GREYC, Université de Caen, 1996.

[032] [Wi] E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1974), 507-528. | Zbl 0283.10032