Kummer’s lemma for p-extensions over totally real number fields
Manabu Ozaki
Acta Arithmetica, Tome 80 (1997), p. 37-44 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207053
@article{bwmeta1.element.bwnjournal-article-aav81i1p37bwm,
     author = {Manabu Ozaki},
     title = {Kummer's lemma for $$\mathbb{Z}$\_p$-extensions over totally real number fields},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {37-44},
     zbl = {0873.11059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p37bwm}
}
Manabu Ozaki. Kummer’s lemma for $ℤ_p$-extensions over totally real number fields. Acta Arithmetica, Tome 80 (1997) pp. 37-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p37bwm/

[000] [1] J. Coates, p-adic L-functions and Iwasawa's theory, in: Algebraic Number Fields, Durham Symposium, 1975, A. Fröhlich (ed.), Academic Press, London, 1977, 269-353.

[001] [2] P. Colmez, Résidu en s = 1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389. | Zbl 0651.12010

[002] [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. | Zbl 0403.12004

[003] [4] K. Iwasawa, On l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.

[004] [5] R. W. K. Odoni, On Gauss sums (modpn), Bull. London Math. Soc. 5 (1973), 325-327. | Zbl 0269.10020

[005] [6] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17. | Zbl 0545.12011

[006] [7] L. C. Washington, Units of irregular cyclotomic fields, Illinois J. Math. 23 (1979), 635-647. | Zbl 0427.12004

[007] [8] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, New York, 1982.

[008] [9] L. C. Washington, Kummer's lemma for prime power cyclotomic fields, J. Number Theory 40 (1992), 165-173. | Zbl 0746.11043

[009] [10] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540. | Zbl 0719.11071