@article{bwmeta1.element.bwnjournal-article-aav81i1p1bwm, author = {Yi Ouyang and Fei Xu}, title = {Riemann-Hurwitz formula in basic $$\mathbb{Z}$\_S$-extensions}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {1-10}, zbl = {0873.11060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p1bwm} }
Yi Ouyang; Fei Xu. Riemann-Hurwitz formula in basic $ℤ_S$-extensions. Acta Arithmetica, Tome 80 (1997) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p1bwm/
[000] [1] N. Childress, λ-invariants and Γ-transforms, Manuscripta Math. 64 (1989), 359-375.
[001] [2] E. Friedman, Ideal class groups in basic extensions of abelian number fields, Invent. Math. 65 (1982), 425-440. | Zbl 0495.12007
[002] [3] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
[003] [4] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohôku Math. J. (2) 33 (1981), 263-288. | Zbl 0468.12004
[004] [5] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 2 (1980), 519-528. | Zbl 0455.12007
[005] [6] J. Satoh, The Iwasawa -invariants of Γ-transforms of the generating functions of the Bernoulli numbers, Japan. J. Math. 17 (1991), 165-174 . | Zbl 0739.11047
[006] [7] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. Math. 75 (1984), 273-282. | Zbl 0531.12004
[007] [8] W. Sinnott, On the p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17. | Zbl 0545.12011
[008] [9] W. Sinnott, Γ-transforms of rational function measures on , Invent. Math. 89 (1987), 139-157. | Zbl 0637.12004
[009] [10] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.