@article{bwmeta1.element.bwnjournal-article-aav81i1p11bwm, author = {P. Guerzhoy}, title = {On Ramanujan congruences between special values of Hecke and Dirichlet L-functions}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {11-23}, zbl = {0878.11020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p11bwm} }
P. Guerzhoy. On Ramanujan congruences between special values of Hecke and Dirichlet L-functions. Acta Arithmetica, Tome 80 (1997) pp. 11-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav81i1p11bwm/
[000] [1] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-285. | Zbl 0311.10030
[001] [2] B. Datskovsky and P. Guerzhoy, On Ramanujan congruences for modular forms of higher weight, Proc. Amer. Math. Soc., to appear. | Zbl 0864.11023
[002] [3] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Ecole Norm. Sup. 7 (1974), 507-530. | Zbl 0321.10026
[003] [4] P. I. Gerzhoĭ and A. A. Panchishkin, Finiteness criterion for the number of rational points on twisted Weil elliptic curves, Zap. Nauch. Sem. LOMI 160 (1987), 41-53. | Zbl 0679.14013
[004] [5] N. M. Katz, p-adic continuation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571.
[005] [6] N. Koblitz, Congruences for periods of modular forms, Duke Math. J. 54 (1987), 361-373. | Zbl 0628.10032
[006] [7] N. Koblitz, p-adic congruences and modular forms of half integer weight, Math. Ann. 274 (1986), 199-220. | Zbl 0571.10030
[007] [8] W. Kohnen, A simple remark on eigenvalues of Hecke operators on Siegel modular forms, Abh. Math. Sem. Univ. Hamburg 57 (1987), 33-36. | Zbl 0641.10022
[008] [9] Yu. I. Manin, Periods of parabolic forms and p-adic Hecke series, Mat. Sb. 92 (1973), 378-401 (in Russian). | Zbl 0293.14007
[009] [10] K. A. Ribet, Congruence relations between modular forms, in: Proceedings of the International Congress of Mathematicians (Warsaw, 1983), PWN, Warszawa, 1984, 503-514. | Zbl 0575.10024
[010] [11] G. Shimura, The special values of the zeta-functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), 783-804. | Zbl 0348.10015
[011] [12] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, in: Modular Functions of One Variable III, Lecture Notes in Math. 350, Springer, 1973, 1-55.
[012] [13] H. P. F. Swinnerton-Dyer, Congruence properties of τ(n), in: Ramanujan Revisited, Proceedings of the Centenary Conference, Academic Press, 1988, 289-311.