Gauss sums for O⁻(2n,q)
Dae San Kim
Acta Arithmetica, Tome 80 (1997), p. 343-365 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207048
@article{bwmeta1.element.bwnjournal-article-aav80i4p343bwm,
     author = {Dae San Kim},
     title = {Gauss sums for O-(2n,q)},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {343-365},
     zbl = {0871.11090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav80i4p343bwm}
}
Dae San Kim. Gauss sums for O⁻(2n,q). Acta Arithmetica, Tome 80 (1997) pp. 343-365. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav80i4p343bwm/

[000] [1] L. Carlitz, Weighted quadratic partitions over a finite field, Canad. J. Math. 5 (1953), 317-323. | Zbl 0052.03805

[001] [2] L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137. | Zbl 0055.01301

[002] [3] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901. | Zbl 32.0128.01

[003] [4] J. H. Hodges, Exponential sums for symmetric matrices in a finite field, Math. Nachr. 14 (1955), 331-339. | Zbl 0072.00903

[004] [5] J. H. Hodges, Weighted partitions for symmetric matrices, Math. Z. 66 (1956), 13-24. | Zbl 0080.01201

[005] [6] J. H. Hodges, Weighted partitions for general matrices over a finite field, Duke Math. J. 23 (1956), 545-552. | Zbl 0072.26702

[006] [7] J. H. Hodges, Weighted partitions for skew matrices over a finite field, Arch. Math. (Basel) 8 (1957), 16-22. | Zbl 0080.01202

[007] [8] J. H. Hodges, Weighted partitions for Hermitian matrices over a finite field, Math. Nachr. 17 (1958), 93-100. | Zbl 0084.04501

[008] [9] D. S. Kim, Gauss sums for O(2n+1,q), submitted. | Zbl 0937.11058

[009] [10] D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math., to appear. | Zbl 1036.11529

[010] [11] D. S. Kim and I.-S. Lee, Gauss sums for O⁺(2n,q), Acta Arith. 78 (1996), 75-89.

[011] [12] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, 1987.