On the diophantine equation nk=xl
K. Győry
Acta Arithmetica, Tome 80 (1997), p. 289-295 / Harvested from The Polish Digital Mathematics Library

P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207044
@article{bwmeta1.element.bwnjournal-article-aav80i3p289bwm,
     author = {K. Gy\H ory},
     title = {On the diophantine equation ${n \atopwithdelims ()k} = x^l$
            },
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {289-295},
     zbl = {0871.11022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav80i3p289bwm}
}
K. Győry. On the diophantine equation ${n \atopwithdelims ()k} = x^l$
            . Acta Arithmetica, Tome 80 (1997) pp. 289-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav80i3p289bwm/

[000] [1] M. A. Bennett and B. M. M. de Weger, On the Diophantine equation |axn-byn|=1, to appear.

[001] [2] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, to appear. | Zbl 0976.11017

[002] [3] P. Dénes, Über die diophantische Gleichung xl+yl=czl, Acta Math. 88 (1952), 241-251.

[003] [4] L. E. Dickson, History of the Theory of Numbers, Vol. II, reprinted by Chelsea, New York, 1971.

[004] [5] P. Erdős, Note on the product of consecutive integers (II), J. London Math. Soc. 14 (1939), 245-249. | Zbl 65.1145.01

[005] [6] P. Erdős, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178. | Zbl 0043.04309

[006] [7] P. Erdős and J. Surányi, Selected Topics in Number Theory, 2nd ed., Szeged, 1996 (in Hungarian). | Zbl 0095.02904

[007] [8] K. Győry, On the diophantine equations n2=al and n3=al, Mat. Lapok 14 (1963), 322-329 (in Hungarian).

[008] [9] K. Győry, Über die diophantische Gleichung xp+yp=czp, Publ. Math. Debrecen 13 (1966), 301-305. | Zbl 0171.29703

[009] [10] K. Győry, Contributions to the theory of diophantine equations, Ph.D. Thesis, Debrecen, 1966 (in Hungarian).

[010] [11] E. Landau, Vorlesungen über Zahlentheorie, III, Leipzig, 1927.

[011] [12] S. Lubelski, Studien über den grossen Fermatschen Satz, Prace Mat.-Fiz. 42 (1935), 11-44. | Zbl 0011.14802

[012] [13] R. Obláth, Note on the binomial coefficients, J. London Math. Soc. 23 (1948), 252-253. | Zbl 0033.24903

[013] [14] P. Ribenboim, The Little Book of Big Primes, Springer, 1991. | Zbl 0734.11001

[014] [15] N. Terai, On a Diophantine equation of Erdős, Proc. Japan Acad. Ser. A 70 (1994), 213-217. | Zbl 0821.11022

[015] [16] R. Tijdeman, Applications of the Gelfond-Baker method to rational number theory, in: Topics in Number Theory, North-Holland, 1976, 399-416.