@article{bwmeta1.element.bwnjournal-article-aav80i2p141bwm, author = {Pierre Stambul}, title = {A generalization of Perron's theorem about Hurwitzian numbers}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {141-148}, zbl = {0876.11031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav80i2p141bwm} }
Pierre Stambul. A generalization of Perron's theorem about Hurwitzian numbers. Acta Arithmetica, Tome 80 (1997) pp. 141-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav80i2p141bwm/
[000] [1] H. Cabannes, Étude des fractions continues ayant leurs quotients en progression arithmétique ou en progression géométrique, La Revue Scientifique 83 (1945), 230-233. | Zbl 0060.16201
[001] [2] C. S. Davis, On some simple continued fractions connected with e, J. London Math. Soc. 20 (1945), 194-198. | Zbl 0060.16111
[002] [3] L. Euler, De fractionibus continuis dissertatio, Comment. Acad. Petropol. 9 (1744), 115-127.
[003] [4] D. H. Lehmer, Continued fractions containing arithmetic progressions, Scripta Math. 29 (1973), 17-24. | Zbl 0263.10012
[004] [5] P. Liardet et P. Stambul, Transducteurs et fractions continuées, preprint, 1996.
[005] [6] K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of , Proc. Cambridge Philos. Soc. 67 (1970), 67-74. | Zbl 0188.10703
[006] [7] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1, 3rd ed., Teubner, 1954, 110-138.
[007] [8] A. J. van der Poorten, An introduction to continued fractions, in: J. H. Loxton and A. J. van der Poorten (eds.), Diophantine Analysis, Cambridge University Press, 1986, 99-138. | Zbl 0596.10008
[008] [9] G. Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283. | Zbl 0251.10024
[009] [10] P. Stambul, Contribution à l'étude des propriétés arithmétiques des fractions continuées, Thèse de l'Université de Provence, 1994