On the lattice point problem for ellipsoids
V. Bentkus ; F. Götze
Acta Arithmetica, Tome 80 (1997), p. 101-125 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207031
@article{bwmeta1.element.bwnjournal-article-aav80i2p101bwm,
     author = {V. Bentkus and F. G\"otze},
     title = {On the lattice point problem for ellipsoids},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {101-125},
     zbl = {0871.11069},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav80i2p101bwm}
}
V. Bentkus; F. Götze. On the lattice point problem for ellipsoids. Acta Arithmetica, Tome 80 (1997) pp. 101-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav80i2p101bwm/

[000] V. Bentkus and F. Götze (1994a), Optimal rates of convergence in the CLT for quadratic forms, preprint 94-063 SFB 343, Universität Bielefeld; Ann. Probab. 24 (1996), 466-490. | Zbl 0858.62010

[001] V. Bentkus and F. Götze (1994b), On the lattice point problem for ellipsoids, preprint 94-111 SFB 343, Universität Bielefeld.

[002] V. Bentkus and F. Götze (1995a), On the lattice point problem for ellipsoids, Russian Acad. Sci. Dokl. Math. 343, 439-440. | Zbl 0879.11053

[003] V. Bentkus and F. Götze (1995b), Optimal rates of convergence in Functional Limit Theorems for quadratic forms, preprint 95-091 SFB 343, Universität Bielefeld. | Zbl 0858.62010

[004] E. Bombieri and H. Iwaniec (1986), On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa (4) 13, 449-472. | Zbl 0615.10047

[005] B. Diviš and B. Novák (1974), On the lattice point theory of multidimensional ellipsoids, Acta Arith. 25, 199-212. | Zbl 0286.10025

[006] C. G. Esseen (1945), Fourier analysis of distribution functions, Acta Math. 77, 1-125. | Zbl 0060.28705

[007] F. Fricker (1982), Einführung in die Gitterpunktlehre, Birkhäuser, Basel. | Zbl 0489.10001

[008] F. Götze (1979), Asymptotic expansions for bivariate von Mises functionals, Z. Wahrsch. Verw. Gebiete 50, 333-355. | Zbl 0405.60009

[009] S. W. Graham and G. Kolesnik (1991), Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge. | Zbl 0713.11001

[010] E. Hlawka (1950), Über Integrale auf konvexen Körpern I, II, Monatsh. Math. 54, 1-36, 81-99. | Zbl 0036.30902

[011] V. Jarník (1928), Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Internat. Acad. Sci. Bohême, 10 pp.

[012] E. Krätzel (1988), Lattice Points, Kluwer, Dordrecht.

[013] E. Krätzel and G. Nowak (1991), Lattice points in large convex bodies, Monatsh. Math. 112, 61-72. | Zbl 0754.11027

[014] E. Krätzel and G. Nowak (1992), Lattice points in large convex bodies, II, Acta Arith. 62, 285-295. | Zbl 0769.11037

[015] E. Landau (1915), Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31, 458-476.

[016] E. Landau (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21, 126-132. | Zbl 50.0118.01

[017] E. Landau und A. Walfisz (1962), Ausgewählte Abhandlungen zur Gitterpunktlehre, (herausgeg. von A. Walfisz), Berlin.

[018] T. K. Matthes (1970), The multivariate Central Limit Theorem for regular convex sets, Ann. Probab. 3, 503-515. | Zbl 0347.60023

[019] B. Novák (1968), Verallgemeinerung eines Peterssonschen Satzes und Gitterpunkte mit Gewichten, Acta Arith. 13, 423-454. | Zbl 0159.06702

[020] H. Prawitz (1972), Limits for a distribution, if the characteristic function is given in a finite domain, Skand. Aktuarietidskr., 138-154. | Zbl 0275.60025

[021] A. Walfisz (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 19, 300-307. | Zbl 50.0116.01

[022] A. Walfisz (1927), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 27, 245-268. | Zbl 53.0158.02

[023] A. Walfisz (1957), Gitterpunkte in mehrdimensionalen Kugeln, Polish Sci. Publ., Warszawa. | Zbl 0088.03802

[024] H. Weyl (1915/16), Über die Gleichverteilung der Zahlen mod-Eins, Math. Ann. 77, 313-352.

[025] J. Yarnold (1972), Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set, Ann. Math. Statist. 43, 1566-1580. | Zbl 0256.62022