Ramanujan's evaluations of Rogers-Ramanujan type continued fractions at primitive roots of unity
Sen-Shan Huang
Acta Arithmetica, Tome 80 (1997), p. 49-60 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:207026
@article{bwmeta1.element.bwnjournal-article-aav80i1p49bwm,
     author = {Sen-Shan Huang},
     title = {Ramanujan's evaluations of Rogers-Ramanujan type continued fractions at primitive roots of unity},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {49-60},
     zbl = {0880.11009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav80i1p49bwm}
}
Sen-Shan Huang. Ramanujan's evaluations of Rogers-Ramanujan type continued fractions at primitive roots of unity. Acta Arithmetica, Tome 80 (1997) pp. 49-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav80i1p49bwm/

[000] [1] P. Bachmann, Niedere Zahlentheorie, New York, 1991.

[001] [2] B. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991. | Zbl 0733.11001

[002] [3] L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland, Amsterdam, 1992. | Zbl 0782.40001

[003] [4] A. I. Markushevich, Theory of Functions of a Complex Variable, English translation by R. A. Silverman, Chelsea, New York, 1985.

[004] [5] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. | Zbl 0639.01023

[005] [6] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

[006] [7] I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1917), 302-321. | Zbl 46.1448.02

[007] [8] H. Stern, Ueber eine der Theilung der Zahlen ähnliche Untersuchung und deren Anwendung auf die Theorie der quadratischen Reste, J. Reine Angew. Math. 61 (1863), 66-94.

[008] [9] H. Stern, Zur Theorie der quadratischen Reste, ibid., 334-349.

[009] [10] R. Daublebsky v. Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Wiener Akad. 111 (1902), 1567-1601.

[010] [11] R. Daublebsky v. Sterneck, Ein Analogon zur additiven Zahlentheorie, ibid. 113 (1904), 326-340. | Zbl 34.0214.02

[011] [12] R. Daublebsky v. Sterneck, Über die Kombinationen der Potenzreste einer Primzahl zu bestimmten Summen, ibid. 114 (1905), 711-758.