Gaussian primes
Etienne Fouvry ; Henryk Iwaniec
Acta Arithmetica, Tome 80 (1997), p. 249-287 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:206979
@article{bwmeta1.element.bwnjournal-article-aav79i3p249bwm,
     author = {Etienne Fouvry and Henryk Iwaniec},
     title = {Gaussian primes},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {249-287},
     zbl = {0881.11070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav79i3p249bwm}
}
Etienne Fouvry; Henryk Iwaniec. Gaussian primes. Acta Arithmetica, Tome 80 (1997) pp. 249-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav79i3p249bwm/

[000] [B1] E. Bombieri, On twin almost primes, Acta Arith. 28 (1975), 177-193; Acta Arith. 28 (1976), 457-461. | Zbl 0319.10051

[001] [B2] E. Bombieri, The asymptotic sieve, Rend. Accad. Naz. XL (5), 1/2 (1975/76).

[002] [C] M. Coleman, The Rosser-Iwaniec sieve in number fields, with an application, Acta Arith. 65 (1993), 53-83. | Zbl 0784.11047

[003] [DH] H. Davenport and H. Halberstam, The values of a trigonometric polynomial at well spaced points, Mathematika 13 (1966), 91-96. | Zbl 0171.00902

[004] [D] W. Duke, Some problems in multidimensional analytic number theory, Acta Arith. 52 (1989), 203-228. | Zbl 0631.12008

[005] [DFI] W. Duke, J. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), 423-441. | Zbl 0840.11003

[006] [F] E. Fogels, On the zeros of Hecke's L-functions I, II, III, Acta Arith. 7 (1962), 87-106, 131-147, 225-240. | Zbl 0100.03801

[007] [FI] J. Friedlander and H. Iwaniec, Bombieri's sieve, in: Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, Progr. Math. 138, Birkhäuser, 1996, 411-430. | Zbl 0862.11052

[008] [GR] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, London, 1965.

[009] [H] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen II, Math. Z. 6 (1920), 11-51.

[010] [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, 1982. | Zbl 0482.10001

[011] [I] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202. | Zbl 0435.10029

[012] [J] E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate, J. Reine Angew. Math. 132 (1907), 238-245.

[013] [K] J. P. Kubilius, On some problems in geometry of prime numbers, Mat. Sb. 31 (73) (1952), 507-542 (in Russian). | Zbl 0049.03301

[014] [MV] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. | Zbl 0281.10021

[015] [P] J. Pomykała, Cubic norms represented by quadratic sequences, Colloq. Math. 66 (1994), 283-297. | Zbl 0814.11044

[016] [R] G. J. Rieger, Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew. Math. 231 (1968), 89-100. | Zbl 0164.05004

[017] [S] A. Selberg, Lectures on Sieves, Collected Papers, Vol. II, Springer, 1991.

[018] [V] R. C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc. 10 (1975), 153-162. | Zbl 0314.10028