@article{bwmeta1.element.bwnjournal-article-aav79i3p221bwm, author = {Albrecht Pfister}, title = {Small zeros of quadratic forms over algebraic function fields}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {221-238}, zbl = {0909.11016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav79i3p221bwm} }
Albrecht Pfister. Small zeros of quadratic forms over algebraic function fields. Acta Arithmetica, Tome 80 (1997) pp. 221-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav79i3p221bwm/
[000] [1] J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262-264. Addendum, Proc. Cambridge Philos. Soc. 52 (1956), 604. | Zbl 0064.28302
[001] [2] J. W. S. Cassels, On the representation of rational functions as sums of squares, Acta Arith. 9 (1964), 79-82. | Zbl 0131.25001
[002] [3] J. W. S. Cassels, Rational Quadratic Forms, London Math. Soc. Monographs 13, Academic Press, London, 1978.
[003] [4] A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topology, London Math. Soc. Lecture Note Ser. 217, Cambridge Univ. Press, 1995. | Zbl 0847.11014
[004] [5] A. Prestel, On the size of zeros of quadratic forms over rational function fields, J. Reine Angew. Math. 378 (1987), 101-112. | Zbl 0606.10014
[005] [6] S. Raghavan, Bounds for minimal solutions of Diophantine equations, Nachr. Akad. Wiss. Göttingen 1975 (9), 109-114. | Zbl 0317.10025
[006] [7] P. Roquette, Analytic theory of elliptic functions over local fields, Hamburg. Math. Einzelschr. 1, Vandenhoeck & Ruprecht, Göttingen, 1970. | Zbl 0194.52002
[007] [8] H. P. Schlickewei and W. M. Schmidt, Quadratic forms which have only large zeros, Monatsh. Math. 105 (1988), 295-311. | Zbl 0684.10016