Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
Harald Niederreiter ; Chaoping Xing
Acta Arithmetica, Tome 80 (1997), p. 59-76 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:206965
@article{bwmeta1.element.bwnjournal-article-aav79i1p59bwm,
     author = {Harald Niederreiter and Chaoping Xing},
     title = {Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {59-76},
     zbl = {0891.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav79i1p59bwm}
}
Harald Niederreiter; Chaoping Xing. Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places. Acta Arithmetica, Tome 80 (1997) pp. 59-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav79i1p59bwm/

[000] [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. | Zbl 0018.19806

[001] [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. | Zbl 0822.11078

[002] [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory, to appear. | Zbl 0893.11047

[003] [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. | Zbl 0292.12018

[004] [5] D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. | Zbl 0569.12008

[005] [6] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. | Zbl 0793.11015

[006] [7] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. | Zbl 0509.14019

[007] [8] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge University Press, Cambridge, 1994. | Zbl 0820.11072

[008] [9] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.

[009] [10] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. | Zbl 0877.11065

[010] [11] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, 1996, 269-296. | Zbl 0932.11050

[011] [12] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. | Zbl 0741.11044

[012] [13] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34 (1988), 1317-1320. | Zbl 0665.94014

[013] [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. | Zbl 0632.12017

[014] [15] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. | Zbl 0762.11026

[015] [16] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. | Zbl 0538.14015

[016] [17] J.-P. Serre, Nombres de points des courbes algébriques sur q, Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983.

[017] [18] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83.

[018] [19] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.

[019] [20] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

[020] [21] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. | Zbl 0727.94007

[021] [22] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. | Zbl 0787.14033

[022] [23] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many rational points, preprint, 1995. | Zbl 0884.11027

[023] [24] C. Voß and T. Høholdt, A family of Kummer extensions of the Hermitian function field, Comm. Algebra 23 (1995), 1551-1566. | Zbl 0827.11072

[024] [25] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Appl. Algebra 84 (1993), 85-93. | Zbl 0776.11068

[025] [26] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102.

[026] [27] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.

[027] [28] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996. | Zbl 0853.11051