@article{bwmeta1.element.bwnjournal-article-aav78i4p377bwm, author = {Wolfgang Ch. Schmid and Reinhard Wolf}, title = {Bounds for digital nets and sequences}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {377-399}, zbl = {0866.11045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i4p377bwm} }
Wolfgang Ch. Schmid; Reinhard Wolf. Bounds for digital nets and sequences. Acta Arithmetica, Tome 80 (1997) pp. 377-399. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i4p377bwm/
[000] [1] J. Bierbrauer, Bounds on orthogonal arrays and resilient functions, J. Combin. Designs 3 (1995), 179-183. | Zbl 0886.05034
[001] [2] A. E. Brouwer, Data base of bounds for the minimum distance for binary, ternary and quaternary codes, URL http://www.win.tue.nl/win/math/dw/voorlincod.html.
[002] [3] R. Hill, A First Course in Coding Theory, Oxford Appl. Math. Comput. Sci. Ser., Oxford University Press, 1986. | Zbl 0616.94006
[003] [4] G. Larcher, H. Niederreiter, and W. Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration, Monatsh. Math. 121 (1996), 231-253. | Zbl 0876.11042
[004] [5] G. Larcher, W. Ch. Schmid, and R. Wolf, Digital (t,m,s)-nets, digital (T,s)-sequences, and numerical integration of multivariate Walsh series, in: P. Hellekalek, G. Larcher, and P. Zinterhof (eds.), Proc. 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods, Salzburg, 1994, Technical Report Ser. 95-4, Austrian Center for Parallel Computation, 1995, 75-107.
[005] [6] M. Lawrence, Combinatorial bounds and constructions in the theory of uniform point distributions in unit cubes, connections with orthogonal arrays and a poset generalization of a related problem in coding theory, PhD thesis, University of Wisconsin, May 1995.
[006] [7] M. Lawrence, A. Mahalanabis, G. L. Mullen, and W. Ch. Schmid, Construction of digital (t,m,s)-nets from linear codes, in: S. D. Cohen and H. Niederreiter (eds.), Finite Fields and Applications (Glasgow, 1995), London Math. Soc. Lecture Note Ser. 233, Cambridge University Press, Cambridge, 1996, 189-208. | Zbl 0869.11060
[007] [8] B. Nashier and W. Nichols, On Steinitz properties, Arch. Math. (Basel) 57 (1991), 247-253. | Zbl 0766.16005
[008] [8] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. | Zbl 0626.10045
[009] [10] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Ser. in Appl. Math. 63, SIAM, Philadelphia, 1992.
[010] [11] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. | Zbl 0833.11035
[011] [12] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.
[012] [13] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: S. D. Cohen and H. Niederreiter (eds.), Finite Fields and Applications (Glasgow, 1995), London Math. Soc. Lecture Note Ser. 233, Cambridge University Press, Cambridge, 1996, 269-296. | Zbl 0932.11050
[013] [14] W. Ch. Schmid, Shift-nets: a new class of binary digital (t,m,s)-nets, submitted to Proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 1996.
[014] [15] W. Ch. Schmid, (t,m,s)-nets: digital construction and combinatorial aspects, PhD thesis, Institut für Mathematik, Universität Salzburg, May 1995.
[015] [16] J. H. van Lint, Introduction to Coding Theory, Springer, Berlin, 1992.