Pascal's triangle (mod 9)
James G. Huard ; Blair K. Spearman ; Kenneth S. Williams
Acta Arithmetica, Tome 80 (1997), p. 331-349 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:206954
@article{bwmeta1.element.bwnjournal-article-aav78i4p331bwm,
     author = {James G. Huard and Blair K. Spearman and Kenneth S. Williams},
     title = {Pascal's triangle (mod 9)},
     journal = {Acta Arithmetica},
     volume = {80},
     year = {1997},
     pages = {331-349},
     zbl = {0874.11024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i4p331bwm}
}
James G. Huard; Blair K. Spearman; Kenneth S. Williams. Pascal's triangle (mod 9). Acta Arithmetica, Tome 80 (1997) pp. 331-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i4p331bwm/

[000] [1] K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233. | Zbl 0704.11002

[001] [2] K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83. | Zbl 0732.11009

[002] [3] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899), 150-156. | Zbl 29.0152.03

[003] [4] A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331. | Zbl 0757.05003

[004] [5] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105. | Zbl 0499.10005

[005] [6] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 8), submitted for publication.

[006] [7] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (NS) 9 (1968), 1-12.

[007] [8] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.

[008] [9] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.

[009] [10] W. A. Webb, The number of binomial coefficients in residue classes modulo p and p², Colloq. Math. 60/61 (1990), 275-280. | Zbl 0734.11018