@article{bwmeta1.element.bwnjournal-article-aav78i3p241bwm, author = {S. Schmitt}, title = {Computation of the Selmer groups of certain parametrized elliptic curves}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {241-254}, zbl = {0866.11039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i3p241bwm} }
S. Schmitt. Computation of the Selmer groups of certain parametrized elliptic curves. Acta Arithmetica, Tome 80 (1997) pp. 241-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i3p241bwm/
[000] [MF IV] B. J. Birch and W. Kuyk, Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975.
[001] [B-S] B. J. Birch and H. P. F. Swinnerton-Dyer, Elliptic curves and modular functions, in: Modular Functions of One Variable IV, Antwerpen 1972, Lecture Notes in Math. 476, Springer, 1975, 2-32. | Zbl 1214.11081
[002] [Fo] H. G. Folz, Ein Beschränktheitssatz für die Torsion von 2-defizienten elliptischen Kurven über algebraischen Zahlkörpern, Dissertation, Universität des Saarlandes, 1985.
[003] [H-M] T. Honda and I. Miyawaki, Zeta-functions of elliptic curves of 2-power conductor, J. Math. Soc. Japan 26 (1974), 362-373. | Zbl 0273.14007
[004] [Ko] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, 1984. | Zbl 0553.10019
[005] [Og] A. Ogg, Abelian curves over 2-power conductor, to appear.
[006] [Sc] S. Schmitt, Berechnung der Mordell-Weil Gruppe parametrisierter elliptischer Kurven, Diplomarbeit, Universität des Saarlandes, 1995.
[007] [Si] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. | Zbl 0729.14026
[008] [Si-Ta] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1985.
[009] [S-T] R. J. Stroeker and J. Top, On the equation Y² = (X+p)(X²+p²), Rocky Mountain J. Math. 27 (1994), 1135-1161. | Zbl 0810.11038
[010] [Ta] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in: Modular Functions of One Variable IV, Antwerpen 1972, Lecture Notes in Math. 476, Springer, 1975, 33-52.
[011] [We] E. Weiss, Algebraic Number Theory, McGraw-Hill, 1963.
[012] [Zi] H. G. Zimmer, A limit formula for the canonical height of an elliptic curve and its application to height computations, in: Number Theory, R. Mollin (ed.), Proc. First Conf. Canad. Number Theory Assoc., Banff, 1988, de Gruyter, 1990, 641-659. | Zbl 0738.14020