@article{bwmeta1.element.bwnjournal-article-aav78i3p227bwm, author = {Lorenz Halbeisen and Norbert Hungerb\"uhler}, title = {Optimal bounds for the length of rational Collatz cycles}, journal = {Acta Arithmetica}, volume = {80}, year = {1997}, pages = {227-239}, zbl = {0863.11015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i3p227bwm} }
Lorenz Halbeisen; Norbert Hungerbühler. Optimal bounds for the length of rational Collatz cycles. Acta Arithmetica, Tome 80 (1997) pp. 227-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i3p227bwm/
[000] [1] R. E. Crandall, On the 3x+1 problem, Math. Comp. 32 (1978), 1281-1292. | Zbl 0395.10013
[001] [2] J. M. Dolan, A. F. Gilman and S. Manickam, A generalization of Everett's result on the Collatz 3x+1 problem, Adv. in Appl. Math. 8 (1987), 405-409. | Zbl 0648.10009
[002] [3] S. Eliahou, The 3x+1 problem: New lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45-56. | Zbl 0786.11012
[003] [4] I. Krasikov, How many numbers satisfy the 3x+1 conjecture ? Internat. J. Math. Sci. 12(4) (1989), 791-796. | Zbl 0685.10008
[004] [5] J. C. Lagarias, The 3x+1-problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. | Zbl 0566.10007
[005] [6] J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arith. 56 (1990), 33-53. | Zbl 0773.11017
[006] [7] G. Leavens and M. Vermeulen, private communication.
[007] [8] J. W. Sander, On the (3N+1)-conjecture, Acta Arith. 55 (1990), 241-248. | Zbl 0707.11017
[008] [9] B. G. Seifert, On the arithmetic of cycles for the Collatz-Hasse(Syracuse) conjectures, Discrete Math. 68 (1988), 293-298. | Zbl 0638.10003
[009] [10] G. Wirsching, An improved estimate concerning 3n+1 predecessor sets, Acta Arith. 63 (1993), 205-210. | Zbl 0804.11022