@article{bwmeta1.element.bwnjournal-article-aav78i2p125bwm, author = {Christopher G. Pinner and Jeffrey D. Vaaler}, title = {The number of irreducible factors of a polynomial, II}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {125-142}, zbl = {0870.11065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p125bwm} }
Christopher G. Pinner; Jeffrey D. Vaaler. The number of irreducible factors of a polynomial, II. Acta Arithmetica, Tome 76 (1996) pp. 125-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p125bwm/
[000] [1] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001
[001] [2] G. Hajós, Solution to problem 41, Mat. Lapok 4 (1953), 40-41 (in Hungarian).
[002] [3] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965), 107-117 | Zbl 0138.03102
[003] [4] H. L. Montgomery and A. Schinzel, Some arithmetic properties of polynomials in several variables, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 195-203.
[004] [5] C. G. Pinner and J. D. Vaaler, The number of irreducible factors of a polynomial, I, Trans. Amer. Math. Soc. 339 (1993), 809-834. | Zbl 0787.11045
[005] [6] A. Schinzel, On the number of irreducible factors of a polynomial, II, Ann. Polon. Math. 42 (1983), 309-320. | Zbl 0531.12001