The number of irreducible factors of a polynomial, II
Christopher G. Pinner ; Jeffrey D. Vaaler
Acta Arithmetica, Tome 76 (1996), p. 125-142 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206937
@article{bwmeta1.element.bwnjournal-article-aav78i2p125bwm,
     author = {Christopher G. Pinner and Jeffrey D. Vaaler},
     title = {The number of irreducible factors of a polynomial, II},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {125-142},
     zbl = {0870.11065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p125bwm}
}
Christopher G. Pinner; Jeffrey D. Vaaler. The number of irreducible factors of a polynomial, II. Acta Arithmetica, Tome 76 (1996) pp. 125-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p125bwm/

[000] [1] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001

[001] [2] G. Hajós, Solution to problem 41, Mat. Lapok 4 (1953), 40-41 (in Hungarian).

[002] [3] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965), 107-117 | Zbl 0138.03102

[003] [4] H. L. Montgomery and A. Schinzel, Some arithmetic properties of polynomials in several variables, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 195-203.

[004] [5] C. G. Pinner and J. D. Vaaler, The number of irreducible factors of a polynomial, I, Trans. Amer. Math. Soc. 339 (1993), 809-834. | Zbl 0787.11045

[005] [6] A. Schinzel, On the number of irreducible factors of a polynomial, II, Ann. Polon. Math. 42 (1983), 309-320. | Zbl 0531.12001