Euler's concordant forms
Ken Ono
Acta Arithmetica, Tome 76 (1996), p. 101-123 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206936
@article{bwmeta1.element.bwnjournal-article-aav78i2p101bwm,
     author = {Ken Ono},
     title = {Euler's concordant forms},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {101-123},
     zbl = {0863.11038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p101bwm}
}
Ken Ono. Euler's concordant forms. Acta Arithmetica, Tome 76 (1996) pp. 101-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i2p101bwm/

[000] [1] E. T. Bell, The problems of congruent numbers and concordant forms, Proc. Amer. Acad. Sci. 33 (1947), 326-328. | Zbl 0029.11007

[001] [2] M. Bennett, private communication.

[002] [3] D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618. | Zbl 0721.11023

[003] [4] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. | Zbl 0359.14009

[004] [5] F. Diamond and K. Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (3) (1995), 299-304. | Zbl 0867.11041

[005] [6] L. Euler, De binis formulis speciei xx+myy et xx+nyy inter se concordibus et disconcordibus, Opera Omnia Series 1 vol. 5 (1780), 48-60, Leipzig-Berlin-Zürich, 1944.

[006] [7] D. Husemöller, Elliptic Curves, Springer, New York, 1987.

[007] [8] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.

[008] [9] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1984. | Zbl 0553.10019

[009] [10] V. A. Kolyvagin, Finiteness of E(ℚ) and the Tate-Shafarevich group of E(ℚ) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540 (in Russian).

[010] [11] J. Lehman, Levels of positive definite ternary quadratic forms, Math. Comp. 58, 197 (1992), 399-417. | Zbl 0754.11011

[011] [12] L. Mai and M. R. Murty, A note on quadratric twists of an elliptic curve, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes, Amer. Math. Soc., 1994, 121-124. | Zbl 0806.14025

[012] [13] D. Masser and J. Rickert, Simultaneous Pell equations, J. Number Theory, to appear.

[013] [14] M. R. Murty and V. K. Murty, Mean values of derivatives of modular L-series, Ann. of Math. 133 (1991), 447-475. | Zbl 0745.11032

[014] [15] K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math., to appear. | Zbl 0876.11025

[015] [16] K. Ono, Twists of elliptic curves, Compositio Math., to appear. | Zbl 0887.11025

[016] [17] T. Ono, Variations on a Theme of Euler, Plenum, New York, 1994.

[017] [18] J. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. | Zbl 0786.11040

[018] [19] H. P. Schlickewei, The number of subspaces occurring in the p-adic subspace theorem in Diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108. | Zbl 0693.10027

[019] [20] W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551.

[020] [21] W. M. Schmidt, Diophantine Approximations, Lecture Notes in Math. 785, Springer, 1980. | Zbl 0432.10029

[021] [22] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), 511-523. | Zbl 0020.20201

[022] [23] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227-260. | Zbl 0355.10021

[023] [24] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971. | Zbl 0221.10029

[024] [25] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. | Zbl 0266.10022

[025] [26] C. Siegel, Über die analytische Theorie der quadratischen formen, in: Gesammelte Abhandlungen, Bd. 3, Springer, 1966, 326-405.

[026] [27] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. | Zbl 0585.14026

[027] [28] J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, New York, 1992. | Zbl 0752.14034

[028] [29] J. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334. | Zbl 0515.10013

[029] [30] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484. | Zbl 0431.10015

[030] [31] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443-551. | Zbl 0823.11029