Maximal independent systems of units in global function fields
Fei Xu ; Jianqiang Zhao
Acta Arithmetica, Tome 76 (1996), p. 1-10 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206931
@article{bwmeta1.element.bwnjournal-article-aav78i1p1bwm,
     author = {Fei Xu and Jianqiang Zhao},
     title = {Maximal independent systems of units in global function fields},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {1-10},
     zbl = {0863.11073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i1p1bwm}
}
Fei Xu; Jianqiang Zhao. Maximal independent systems of units in global function fields. Acta Arithmetica, Tome 76 (1996) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i1p1bwm/

[000] [FY] K. Feng, L. Yin, Maximal independent systems of units in cyclotomic function fields, Sci. China 34 (1991), 908-919. | Zbl 0749.11046

[001] [GR1] S. Galovich, M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), 363-375. | Zbl 0473.12014

[002] [GR2] S. Galovich, Units and class group in cyclotomic function fields, J. Number Theory 14 (1982), 156-184. | Zbl 0483.12003

[003] [H1] D. Hayes, Elliptic units in function fields, in: Proceedings of a Conference Related to Fermat's Last Theorem, D. Goldfeld (ed.), Birkhäuser, Boston, 1982, 321-341.

[004] [H2] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 1-32.

[005] [H3] D. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. | Zbl 0569.12008

[006] [H4] D. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-271.

[007] [O] H. Oukhaba, Elliptic units in global function fields, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, D. Goss, D. Hayes and M. Rosen (eds.), Walter de Gruyter, Berlin, New York, 1992, 87-102. | Zbl 0804.11042

[008] [R] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. | Zbl 0632.12017

[009] [S] L. Shu, Class number formulas over global function fields, J. Number Theory 48 (1994), 133-161. | Zbl 0817.11051

[010] [W] A. Weil, Basic Number Theory, Springer, New York, 1974. | Zbl 0326.12001

[011] [Y] L. Yin, Index-class number formulas over global function fields, Preprint series 95-42, Department of Mathematics, University of Tokyo, 1995.