@article{bwmeta1.element.bwnjournal-article-aav78i1p19bwm, author = {Nicolas Chevallier}, title = {Meilleures approximations d'un element du tore T2 et geometrie de la suite des multiples de cet element}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {19-35}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav78i1p19bwm} }
Nicolas Chevallier. Meilleures approximations d'un élément du tore 𝕋² et géométrie de la suite des multiples de cet élément. Acta Arithmetica, Tome 76 (1996) pp. 19-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav78i1p19bwm/
[000] [Ca] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math. and Math. Phys. 45, Cambridge Univ. Press, 1965.
[001] [Ch] N. Chevallier, Distances dans la suite des multiples d'un point du tore à deux dimensions, Acta Arith. 74 (1996), 47-59.
[002] [H-W] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford University Press, 1971.
[003] [L1] J. C. Lagarias, Some new results in simultaneous Diophantine approximation, in: Proc. of the Queen's Number Theory Conference 1979, P. Ribenboim (ed.), Queen's Papers in Pure and Appl. Math. 54, 1980, 453-474.
[004] [L2] J. C. Lagarias, Best simultaneous Diophantine approximations I. Growth rates of best approximations denominators, Trans. Amer. Math. Soc. 272 (1982), 545-554. | Zbl 0495.10021
[005] [L3] J. C. Lagarias, Best simultaneous Diophantine approximations II. Behavior of consecutive best approximations, Pacific J. Math. 102 (1982), 61-88. | Zbl 0497.10025
[006] [L4] J. C. Lagarias, Geodesic multidimensional continued fractions, Proc. London Math. Soc. (3) 69 (1994), 464-488. | Zbl 0813.11040
[007] [Sp] V. G. Sprindžuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, D.C., 1979.
[008] [Sz-Só] G. Szekeres and V. T. Sós, Rational approximation vectors, Acta Arith. 49 (1988), 255-261. | Zbl 0637.10024